UNIT-V

Unit-5

File A file represents a sequence of bytes on the disk where a group of related data is
stored. File is created for permanent storage of data. It is a ready made structure.
In C language, we use a structure pointer of file type to declare a file.

Streams In C, the stream is a common, logical interface to the various devices that comprise

the computer. In its most common form, a stream is a logical interface to a file

Formatted I/O

C provides standard functions scanf() and printf(), for performing formatted input
and output. These functions accept, as parameters, a format specification string and

a list of variables.

Preprocessor The C preprocessor is a macro preprocessor that transforms your program before it

Directives is compiled.

Printf In C programming language, printf() function is used to print the “character, string,
float, integer, octal and hexadecimal values” onto the output screen.

Scanf The scanf function allows you to accept input from standard in, which for us is

generally the keyboard.

CONSOLE 1/0

The C language does not define any keywords that perform I/O. Instead, input and
output are accomplished through library functions. C's 1/0 system is an elegant piece of
engineering that offers a flexible yet cohesive mechanism for transferring data between
devices. C's 1/0 system is, however, quite large, and consists of several different functions.

The header for the 1/0 functions is <stdio.h> . There are both console and file 1/0
functions. Technically, there is little distinction between console I/O and file 1/0. But
conceptually they are in very different worlds.

This section examines in detail the console 1/O functions.

The next section presents the file 1/0 system and describes how the two systems

relate.

Reading and Writing Characters

e The simplest of the console 1/0 functions are getchar() , which reads a character
from the keyboard, and putchar(), which writes a character to the screen.

e The getchar() function waits until a key is pressed and then returns its value.
e The keypress is also automatically echoed to the screen.

e The putchar() function writes a character to the screen at the current cursor
position. The prototypes for getchar() and putchar() are shown here:

int getchar(void);
int putchar(int c);

Example Program
#include <stdio.h>
#include<conio.h>
void main()
{
char ch;
printf("Enter a character :");
ch = getchar();

printf("\nYou entered: ");

putchar(ch);
getch();

}
Expected Output

Enter a character:A
You entered:

A

Reading and Writing Strings

The next step up in console 1/O, in terms of complexity and power, are the functions
gets() and puts(). They enable you to read and write strings of characters.

The gets() function reads a string of characters entered at the keyboard and stores them at the
address pointed to by its argument. You can type characters at the keyboard until you strike a
carriage return. The carriage return does not become part of the string; instead, a null terminator
is placed at the end, and gets() returns. In fact, you cannot use gets() to return a carriage return
(although getchar() can do so). You can correct typing mistakes by using the backspace key
before pressing ENTER.

The usage of functions gets() and its counterpart puts() is shown below.
Example Program

/Iputs and gets

void main()

{

char name[25] ;

clrscr();

printf ("Enter your full name: ") ;
gets (name); // accepts the string
puts (name) ; // displays the string
getch();

}

Expected Output

Enter your full name: Ayesha Shariff
Ayesha Shariff

e puts() can display only one string at a time (hence the use of two puts() in the program
above). Also, on displaying a string, unlike printf(), puts() places the cursor on the
next line.

e Though gets() is capable of receiving only one string at a time, the plus point with
gets() is that it can receive a multi-word string.

Formatted Console 1/0

e The functions printf() and scanf() perform formatted output and input— that is, they
can read and write data in various formats that are under your control.

e The printf() function writes data to the console.

e The scanf() function, its complement, reads data from the keyboard.

e Both functions can operate on any of the built-in data types, plus null-terminated
character strings.
The following are the two types of formatted 1/0O functions

(@) printf()
(b) scanf()

(a) printf()

This function is used to print result on the monitor.

Integer

Data Destination Program

Syntax

printf(“control string”,argl,arg2,....,argn);
Examples

printf(“%d”,a);

printf(“%d%c”,num,ch);

Printing Characters

e To print an individual character, use %oc.
e To print a string, use %os.
Printing Numbers

e You can use either %d or %i to display a signed integer in decimal format.

e These format specifiers are equivalent; both are supported for historical reasons, of
which one is the desire to maintain an equivalence relationship with the scanf() format
specifiers.

e To output an unsigned integer, use %ou.

e The %f format specifier displays numbers in floating point.

e The matching argument must be of type double.

Displaying an Address

e |If you want to display an address, use %p.
e This format specifier causes printf() to display a machine address in a format
compatible with the type of addressing used by the computer.
('b) scanf()

This function is used to read values for variables from keyboard.

P
r
©
=
n
o
O
ui]
=
o
W
P
no

--

Standard Input Program

Syntax
scanf(“control string”,address_list);

where control string specifies the type of values that have to read from the keyboard.
Examples

scanf(“%d”,&a);
scanf(“%d%1”,&a,&b);
scanf(*“%d%t%c”,&a, &b, &c);
Standard C vs. Unix File 1/0

C was originally implemented for the Unix operating system. As such, early versions
of C (and many still today) support a set of I/O functions that are compatible with Unix. This
set of 1/0 functions is sometimes referred to as the Unix-like 1/0O system, or the unbuffered 1/0
system. However, when C was standardized, the Unix-like functions were not incorporated into
the standard, largely because they are redundant. Also, the Unix-like system may not be
relevant to certain environments that could otherwise support C.

This chapter discusses only those 1/0 functions that are defined by Standard C. In
previous editions of this work, the Unix-like file system was given a small amount of coverage.
In the time that has elapsed since the previous edition, use of the standard 1/0O functions has
steadily risen and use of the Unix-like functions has steadily decreased. Today, most
programmers use the standard functions because they are portable to all environments (and to
C++). Programmers wanting to use the Unix like functions should consult their compiler's
documentation.

Streams and Files

Before beginning our discussion of the C file system it is necessary to know the difference
between the terms streams and files. The C I/O system supplies a consistent interface to the
programmer independent of the actual device being accessed. That is, the C I/O system
provides a level of abstraction between the programmer and the device. This abstraction is
called a stream, and the actual device is called a file. It is important to understand how streams
and files interact.

Streams

The C file system is designed to work with a wide variety of devices, including terminals, disk
drives, and tape drives. Even though each device is very different, the buffered file system
transforms each into a logical device called a stream. All streams behave similarly. Because
streams are largely device independent, the same function that can write to a disk file can also
write to another type of device, such as the console.

There are two types of streams: text and binary.
(a) Text Streams

A text stream is a sequence of characters. Standard C states that a text stream is organized into
lines terminated by a newline character. However, the newline character is optional on the last
line. In a text stream, certain character translations may occur as required by the host
environment. For example, a newline may be converted to a carriage return/linefeed pair.
Therefore, there may not be a one-to-one relationship between the characters that are written
(or read) and those stored on the external device. Also, because of possible translations, the
number of characters written (or read) may not be the same as the number that is stored on the
external device.

(b) Binary Streams

A binary stream is a sequence of bytes that has a one-to-one correspondence to the bytes in the
external device— that is, no character translations occur. Also, the number of bytes written (or
read) is the same as the number on the external device. However, an implementation— defined
number of null bytes may be appended to a binary stream. These null bytes might be used to
pad the information so that it fills a sector on a disk, for example.

Files

In C, a file may be anything from a disk file to a terminal or printer. You associate a
stream with a specific file by performing an open operation. Once a file is open, information
can be exchanged between it and your program. Not all files have the same capabilities. For
example, a disk file can support random access, while some printers cannot. This brings up an
important point about the C I/O system: All streams are the same, but all files are not.

If the file can support position requests, opening that file also initializes the file position
indicator to the start of the file. As each character is read from or written to the file, the position
indicator is incremented, ensuring progression through the file.

You disassociate a file from a specific stream with a close operation. If you close a file
opened for output, the contents, if any, of its associated stream are written to the external device.
This process, generally referred to as flushing the stream, guarantees that no information is
accidentally left in the disk buffer. All files are closed automatically when your program
terminates normally, either by main(') returning to the operating system or by a call to exit().

Files are not closed when a program terminates abnormally, such as when it crashes or when it
calls abort(). Each stream that is associated with a file has a file control structure of type
FILE. Never modify this file control block.

If you are new to programming, the separation of streams and files may seem
unnecessary or contrived. Just remember that its main purpose is to provide a consistent
interface. You need only think in terms of streams and use only one file system to accomplish
all 1/0 operations. The 1/0 system automatically converts the raw input or output from each
device into an easily managed stream.

File System Basics

The C file system is composed of several interrelated functions.

The most common of these are shown in Table 9-1.

They require the header <stdio.h> .

The header <stdio.h> provides the prototypes for the 1/0 functions and defines these
three types: size_t, fpos_t, and FILE.

Terminates normally, either by main() returning to the operating system or by a call to
exit(). Files are not closed when a program terminates abnormally, such as when it crashes or
when it calls abort(). Each stream that is associated with a file has a file control structure of
type FILE. Never modify this file control block.

If you are new to programming, the separation of streams and files may seem
unnecessary or contrived. Just remember that its main purpose is to provide a consistent
interface. You need only think in terms of streams and use only one file system to accomplish
all 1/0 operations. The 1/0 system automatically converts the raw input or output from each
device into an easily managed stream.

File System Basics

e The C file system is composed of several interrelated functions.
e The most common of these are shown in Table 9-1.
e They require the header <stdio.h> .
e The header <stdio.h> provides the prototypes for the 1/0 functions and defines these
three types: size_t, fpos_t, and FILE.
e The size_t type is some variety of unsigned integer, as is fpos_t.
e The FILE type is discussed in the next section.
The File Pointer

e The file pointer is the common thread that unites the C 1/0 system.

e A file pointer is a pointer to a structure of type FILE. It points to information that
defines various things about the file, including its name, status, and the current position
of the file.

e Inessence, the file pointer identifies a specific file and is used by the associated
stream to direct the operation of the 1/0 functions.

In order to read or write files, your program needs to use file pointers.

To obtain a file pointer variable, use a statement like this:

FILE *fp;

Opening a File

The fopen(') function opens a stream for use and links a file with that stream.
Then it returns the file pointer associated with that file.
Most often (and for the rest of this discussion), the file is a disk file.

The fopen(') function has this prototype,

FILE *fopen(const char *filename, const char *mode);

Name Function

fopen() Opens a file

felosed) Closes a file

putey() Writes a character to a file

fputc() Same as putc()

gete() Reads a character from a file

fgenc() Same as getc()

fgets() Reads a sinng from a file

fputs() Writes a string to a file

foeek() Seeks to a specified byte mn a file

ftell{) Returns the current file posinon

fprantfi) Is to a file what printf{) 1s 1o the console
fscanfl) Is to a file what scanf() 1s to the console
teofi) Femms true 1f end-ot-tile 15 reached
ferror() Returns true 1if an error has occurred
rewind() Resets the file position indicator to the beginning of the file
remove() Erases a file

fflushi() Flushes a file

Table 9-1. Commonly Used C File-System Functions

where filename is a pointer to a string of characters that make up a valid filename and
may include a path specification.

The string pointed to by mode determines how the file will be opened.

Table 9-2 shows the legal values for mode.

Strings like "r+b" may also be represented as "rb+".

As stated, the fopen() function returns a file pointer.

Your program should never alter the value of this pointer.

If an error occurs when it is trying to open the file, fopen(') returns a null pointer.

The following code uses fopen() to open a file named TEST for output.

FILE *fp;

fp = fopen("test"”, "w");

Mode Meaning

r Open a text file for reading

w Create a text file for writing

a Append to a text file

b Open a binary file for reading

wb Create a binary file for writing

ab Append to a bimnary file

r+ Open a text file for read/write

w+ Create a text file for read'write

at Append or create a text file for read/write
r+b Open a binary file for read/write

w+b Create a bmary file for read‘write

at+b Append or create a binary file for read/write

Table 9-2. Legal Vaiues for Mode

Although the preceding code is technically correct, you will usually see it written like this:
FILE *fp;

if ((fp = fopen(“test”,"w"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

This method will detect any error in opening a file, such as a write-protected or a full
disk, before your program attempts to write to it. In general, you will always want to confirm
that fopen() succeeded before attempting any other operations on the file.

Closing a File

The fclose() function closes a stream that was opened by a call to fopen(). It writes
any data still remaining in the disk buffer to the file and does a formal operating-system-level
close on the file. Failure to close a stream invites all kinds of trouble, including lost data,
destroyed files, and possible intermittent errors in your program. fclose() also frees the file
control block associated with the stream, making it available for reuse. Since there is a limit to

the number of files you can have open at any one time, you may have to close one file before
opening another.

The fclose() function has this prototype,
int fclose(FILE *fp);

where fp is the file pointer returned by the call to fopen(). A return value of zero
signifies a successful close operation. The function returns EOF if an error occurs. You can
use the standard function ferror() (discussed shortly) to determine the precise cause of the
problem. Generally, fclose() will fail only when a disk has been prematurely removed from
the drive or there is no more space on the disk.

Example Programs

(i) To Create a new File
#include<stdio.h>
void main()

{

FILE *fp;
char str[80];
clrscr();

fp=fopen("filel.txt","w");
if(fp==NULL)
printf("\nFile Not Exist!");
printf("\nEnter the text\n");
while(strlen(gets(str))>0)
{
fputs(str,fp);
fputs("\n",fp);
}
fclose(fp);
getch();

¥

(i1) To Display the contents of a
File #include<stdio.h>
void main()

{

FILE *fp;
char str[80];
clrscr();

fp=fopen("filel.txt","r");
if(fo==NULL)
printf("\nFile Not Exist!");
while(fgets(str,79,fp)!=NULL)
printf(*%s",str);

fclose(fp);

getch();

¥

fread() and fwrite()

To read and write data types that are longer than 1 byte, the C file system provides two
functions: fread() and fwrite(). These functions allow the reading and writing of blocks of
any type of data.

Their prototypes are
size_t fread(void *buffer, size_t num_bytes, size_t count, FILE *fp);
size_t fwrite(const void *buffer, size_t num_bytes, size_t count, FILE *fp);

For fread(), buffer is a pointer to a region of memory that will receive the data from
the file. For fwrite(), buffer is a pointer to the information that will be written to the file. The
value of count determines how many items are read or written, with each item being num_bytes
bytes in length. (Remember, the type size t is defined as some kind of unsigned integer.)
Finally, fp is a file pointer to a previously opened stream.

The fread() function returns the number of items read. This value may be less than
count if the end of the file is reached or an error occurs. The fwrite() function returns the
number of items written. This value will equal count unless an error occurs.

Using fread() and fwrite()

As long as the file has been opened for binary data, fread() and fwrite() can read and
write any type of information.

For example, the following program writes and then reads back a double, an int, and
a long to and from a disk file. Notice how it uses sizeof to determine the length of each data

type.

Example Program

I* Write some non-character data to a disk file and read it back. */
#include <stdio.h>

#include <stdlib.h>

int main(void)

{

FILE *fp;

double d = 12.23;

inti=101;

long 1 = 123023L,;

if((fp=fopen("test"”, "wb+"))==NULL) {
fread() and fwrite()

To read and write data types that are longer than 1 byte, the C file system provides two
functions: fread() and fwrite(). These functions allow the reading and writing of blocks of
any type of data.

Their prototypes are
size_t fread(void *buffer, size_t num_bytes, size_t count, FILE *fp);
size_t fwrite(const void *buffer, size_t num_bytes, size_t count, FILE *fp);

For fread(), buffer is a pointer to a region of memory that will receive the data from
the file. For fwrite(), buffer is a pointer to the information that will be written to the file. The
value of count determines how many items are read or written, with each item being num_bytes
bytes in length. (Remember, the type size t is defined as some kind of unsigned integer.)
Finally, fp is a file pointer to a previously opened stream.

The fread() function returns the number of items read. This value may be less than
count if the end of the file is reached or an error occurs. The fwrite() function returns the
number of items written. This value will equal count unless an error occurs.

Using fread() and fwrite()

As long as the file has been opened for binary data, fread() and fwrite() can read and
write any type of information.

For example, the following program writes and then reads back a double, an int, and
a long to and from a disk file. Notice how it uses sizeof to determine the length of each data

type.

Example Program

I* Write some non-character data to a disk file and read it back. */
#include <stdio.h>

#include <stdlib.h>

int main(void)

{

FILE *fp;

double d = 12.23;

inti=101;

long 1 = 123023L,;

if((fp=fopen("test"”, "wb+"))==NULL) {
return O;

}

fseek() and Random-Access 1/0

You can perform random read and write operations using the C 1/0 system with the
help of fseek(), which sets the file position indicator. Its prototype is shown here:

int fseek(FILE *fp, long int numbytes, int origin);

Here, fp is a file pointer returned by a call to fopen(), numbytes is the number of bytes from
origin, which will become the new current position, and origin is one of the following macros:

Origin Macro Name
Beginning of file SEEK_SET
Current position SEEK CUR

End of file SEEK_END

Therefore, to seek numbytes from the start of the file, origin should be SEEK_SET. To
seek from the current position, use SEEK_CUR, and to seek from the end of the file, use
SEEK_END. The fseek() function returns zero when successful and a nonzero value if an
error occurs.

The following program illustrates fseek(). It seeks to and displays the specified byte in the
specified file. Specify the filename and then the byte to seek to on the command line.

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

FILE *fp;

if(argc!=3) {

printf("Usage: SEEK filename byte\n");
exit(1);

}

if((fp = fopen(argv[1], "rb"))==NULL) {
printf(*Cannot open file.\n");

exit(1);

}

if(fseek(fp, atol(argv[2]), SEEK_SET)) {
printf("Seek error.\n");

exit(1);

}

printf("Byte at %ld is %c.\n", atol(argv[2]), getc(fp));
fclose(fp);

return O;

}

fprintf() and fscanf()

In addition to the basic 1/0 functions already discussed, the C 1/O system includes fprintf() and
fscanf().

These functions behave exactly like printf(') and scanf() except that they operate
with files.

The prototypes of fprintf() and fscanf() are

int fprintf(FILE *fp, const char *control_string, . . .);
int fscanf(FILE *fp, const char *control_string, . . .);

where fp is a file pointer returned by a call to fopen(). fprintf() and fscanf() direct their 1/0
operations to the file pointed to by fp.

As an example, the following program reads a string and an integer from the keyboard
and writes them to a disk file called TEST. The program then reads the file and displays the
information on the screen. After running this program, examine the TEST file. As you will see,
it contains human readable text.

Example Program

[* fscanf() - fprintf() example */
#include <stdio.h>

#include <io.h>

#include <stdlib.h>

int main(void)

{

FILE *fp;

char s[80];

int t;

if((fo=fopen("test"”, "w")) == NULL) {
printf("Cannot open file.\n");

exit(1);

}

printf("Enter a string and a number: *);

fscanf(stdin, "%s%d", s, &t); /* read from keyboard
[fprintf(fp, "%s %d", s, t); / write to file */
fclose(fp);

if((fp=fopen("test","r")) == NULL) {
printf("Cannot open file.\n");
exit(1);

k
fscanf(fp, "%s%d", s, &t); /* read from file */

fprintf(stdout, "%s %d", s, t); /* print on screen */
return O;

by

A word of warning: Although fprintf() and fscanf() often are the easiest way to write
and read assorted data to disk files, they are not always the most efficient. So, if speed or file
size is a concern, you should probably use fread() and fwrite().

The Standard Streams

e As it relates to the C file system, when a program starts execution, three streams are
opened automatically.

e They are stdin (standard input), stdout (standard output), and stderr (standard error).

e Normally, these streams refer to the console, but they can be redirected by the operating
system to some other device in environments that support redirectable 1/O.
(Redirectable 1/0 is supported by Windows, DOS, Unix, and OS/2, for example.)

e Because the standard streams are file pointers, they may be used by the C 1/0O system
to perform I/O operations on the console.
For example, putchar() could be defined like this:

int putchar(char c)

{

return putc(c, stdout);

}

e Ingeneral, stdin is used to read from the console, and stdout and stderr are used to
write to the console.
e You can use stdin, stdout, and stderr as file pointers in any function that uses a
variable of type FILE *.
For example, you could use fgets() to input a string from the console using a call like this:

char str[255];
fgets(str, 80, stdin);

The Preprocessor Directives #define and #include.

You can include various instructions to the compiler in the source code of a C program.
These are called preprocessor directives, and they expand the scope of the programming
environment.

(i) #define

The #define directive defines an identifier and a character sequence (a set of characters) that
will be substituted for the identifier each time it is encountered in the source file. The identifier
is referred to as a macro name and the replacement process as macro replacement.

The general form of the directive is
#define macro-name char-sequence

Notice that there is no semicolon in this statement. There may be any number of spaces between
the identifier and the character sequence, but once the character sequence begins, it is
terminated only by a newline.

Example
#define UPPER 25

This statement is called ,,macro definition* or more commonly, just a ,,macro“. What purpose
does it serve? During preprocessing, the preprocessor replaces every occurrence of UPPER in
the program with 25.

Example Program

#define UPPER 25

main()

{

inti;
for(i=1;i<=UPPER; i++)
printf ("\n%d", i) ;

}

In this program instead of writing 25 in the for loop we are writing it in the form of UPPER,
which has already been defined before main(') through the statement.

(ii) #include

The second preprocessor directive is file inclusion. This directive causes one file to be
included in another.

The preprocessor command for file inclusion looks like this:

#include "'filename™ and it simply causes the entire contents of filename to be inserted into the
source code at that point in the program.

It is common for the files that are to be included to have a .h extension. This extension stands
for ,,header file™, possibly because it contains statements which when included go to the head
of your program. The prototypes of all the library functions are grouped into different
categories and then stored in different header files. For example prototypes of all mathematics
related functions are stored in the header file ,,math.h*, prototypes of console input/output
functions are stored in the header file ,,conio.h®, and so on.

Actually there exist two ways to write #include statement. These are:
#include "'filename™
#include <filename>

The meaning of each of these forms is given below:

This command would look for the file goto.c in the current directory
#include ""goto.c™ | as well as the specified list of directories as mentioned in the include

search path that might have been set up.

This command would look for the file goto.c in the specified list of
#include <goto.c>
directories only.

Assignment Questions
Unit -V

1. Explain in detail about reading and writing characters in C with example program.

2. Describe in detail about printf() and scanf() functions.

3. Define String? What are the various string manipulation functions available in C? Explain.
4. Define Preprocessor directives. Discuss Marco replacement with an example.

5. How to use fseek() for random access of the file content?

6. Describe various types of files and operations on files with an example.

7. What are C preprocessor directives? Explain various types.

