
• Data that exists between various versions of a program 

• Data that outlives the program 

Persistence is theproperty of an object tbrougb which its existence transcends time (i.e. 

tbe object continues to exist after its creator ceases to exist) and/or space (i. e. the objects 

location moves from the address space in wbich it was created). 

 

 

 

 

Applying the Object Model 

 

Benefits of the Object Model 
As we have shown, the object model is fundamentally different from the models 

embraced by 

the more traditional methods of structured analysis, structured design, and structured 

programming. This does not mean that the object model abandons all of the sound 

principles and experiences of these older methods. Rather, it introduces several novel 

elements that build upon these earlier models. Thus, the object model offers a number of 

significant benefits that other models simply do not provide. Most importantly, the use of 

the object model leads us to construct systems that embody the five attributes of well-

structured complex systems. In our experience, there are five other practical benefits to be 

derived from the application of the object model. 

 

Applications of the Object Model 
The object model has proven applicable to a wide variety of problem domains. many of 

the domains for which systems exist that may properly be called object-oriented. The 

Bibliography provides an extensive list of references to these and other applications. 

Object-oriented analysis and design may be the only method we have today that can be 

employed to attack the complexity inherent in very large systems. In all fairness, however, 

the use of object-oriented development may be ill-advised for some domains, not for any 

technical reasons, but for nontechnical ones, such as the absence of a suitably trained staff 

or a good development environment 

 

 

Open Issues 
To effectively apply the elements of the object model, we must next address several open 

issues: 

• What exactly are classes and objects? 

• How does one properly identify the classes and objects that are relevant to a particular  

application? 

• What is a suitable notation for expressing the design of an object-oriented system? 

• What process can lead us to a weil-structured object-oriented system? 

• What are the management implications of using object-oriented design? 

 

 

 
 



UNIT-II 

 

CLASS AND OBJECTS 

 

 

 Nature of an Object 
 

The ability to recognize physical objects is a skill that humans learn at a very early age. A 

brightly colored ball will attract an infant's attention, but typically, if you hide the ball, the 

child will not try to look for it; when the object leaves her field of vision, as far as she can 

determine, it ceases to exist. It is not until near the age of one that a child normally 

develops what is called the object concept, a skill that is of critical importance to future 

cognitive development. Show a ball to a one-year-old and then hide it, and she will 

usually search for it 

even though it is not visible. 

From the perspective of human cognition, an object is any of the following: 

• A tangible and/or visible thing 

• Something that may be apprehended intellectually 

• Something toward which thought or action is directed 

An object has state, behavior, and identity; the structure and behavior of similar objects 

are defined in their common class; the terms instance and object are interchangeable 

 

 

State 
Semantics Consider a vending machine that dispenses soft drinks. The usual behavior of 

such objects is that when one puts coins in a slot and pushes a button to make a selection, 

a drink emerges from the machine. What happens if a user first makes a selection and then 

puts money in the slot? Most vending machines just sit and do nothing, because the user 

has violated the basic assumptions of their operation. Stated another way, the vending 

machine was playing a role (of waiting for coins) that the user ignored (by making a 

selection first). Similarly, suppose that the user ignores the warning light that says 

"Correct change only," and puts in extra money. Most machines are use rhostile; they will 

happily swallow the excess coins. 

The state of an object encompasses all of the (usually static) properties of to be object 

plus to be current (usually dynamic) values of each of these properties. 

 

Behavior 
The Meaning of Behavior No object exists in isolation. Rather, objects are acted upon, 

and 

themselves act upon other objects. Thus, we may say that 

Behavior is how an object acts and reacts, in terms of its state changes and message 

passing. 

In other words, the behavior of an object represents its outwardly visible and testable 

activity 

 

 

 



Identity 
Semantics Khoshafian and Copeland offer the following definition: 

“Identity is that property of an object which distinguishes it from all other objects “ 

They go on to note that "most programming and database languages use variable names to 

distinguish temporary objects, mixing addressability and identity. Most database systems 

use identifier keys to distinguish persistent objects, mixing data value and identity." The 

failure to recognize the difference between the name of an object and the object itself is 

the source of many kinds of errors in object-oriented programming. 

 

Relationships Among Objects 

 

Kinds of Relationships 
An object by itself is intensely uninteresting. Objects contribute to the behavior of a 

system by collaborating with one another. As Ingalls suggests, "Instead of a bit-grinding 

processor raping and plundering data structures, we have a universe of well-behaved 

objects that courteously ask each other to carry out their various desires" . For example, 

consider the object structure of an airplane, which has been defined as "a collection of 

parts having an inherent tendency to fall to earth, and requiring constant effort and 

supervision to stave off that outcome" . Only the collaborative efforts of all the 

component objects of an airplane enable it to fly. The relationship between any two 

objects encompasses the assumptions that each makes about the other, including what 

operations can be performed and what behavior results. We have found that two kinds of 

object hierarchies are of particular interest in object-oriented analysis and design, namely: 

• Links 

• Aggregation 

 

 
Figure 3-2 

Links 

 

Links 
Semantics The term link derives from Rumbaugh, who defines it as a "physical or 

conceptual 



connection between objects". An object collaborates with other objects through its links to 

these objects. Stated another way, a link denotes the specific association through which 

one 

object (the client) applies the services of another object (the supplier), or through which 

oneobject may navigate to another. Figure 3-2 illustrates several different links. In this 

figure, a line between two object icons represents the existence of a link between the two 

and means that messages may pass along this path. Messages are shown as directed lines 

representing the direction of the message, with a label naming the message itself. For 

example, here we see that the object aController has links to two instances of DisplayItem (the 

objects a and b). Although both a and b probably have links to the view in which they are 

shown, we have chosen to highlight only once such link, from a to aView. Only across these 

links may one object send messages to another. 

 

As a participant in a link, an object may play one of three roles: 

• Actor An object that can operate upon other objects but is never operated upon by other 

objects; in some contexts, the terms active object and actor are interchangeable 

• Server An object that never operates upon other objects; it is only operated upon by 

other objects 

• Agent An object that can both operate upon other objects and be operated upon by other 

objects; an agent is usually created to do some work on behalf of an actor or another agent 

 

Aggregation 

 
Semantics Whereas links denote peer-to-peer or client/supplier relationships, aggregation 

denotes a whole/part hierarchy, with the ability to navigate from the whole (also called the 

aggregate) to its parts (also known as its attributes). In this sense, aggregation is a 

specialized kind of association. For example, as shown in Figure 3-3, the object 

rampController has a link to the object growingRamp as well as an attribute h whose class is 

Heater. The object rampController is thus the whole, and h is one of its parts. In other words, h 

is a part of the state of the object rampController. Given the object rampController, it is 

possible to find its corresponding heater h. Given an object such as h, it is possible to 

navigate to its enclosing object (also called its container) if and only if this knowledge is a 

part of the state of h. Aggregation may or may not denote physical containment. For 

example, an airplane is composed of wings, engines, landing gear, and so on: this is a case 

of physical containment. On the other hand, the relationship between a shareholder and 

her shares is an aggregation relationship that does not require physical containment. The 

shareholder uniquely owns shares, but the shares are by no means a physical part of the 

shareholder. Rather, this whole/part relationship is more conceptual and therefore less 

direct than the physical aggregation of the parts that form an airplane. 



 
Figure 3-3 

Aggregation 

 

 

Nature of a Class 

 
The concepts of a class and an object are tightly interwoven, for we cannot talk about an 

object without regard for its class. However, there are imiportant differences between 

these two terms. Whereas an object is a concrete entity that exists in time and space, a 

class represents only an abstraction, the “essence" of an object, as it were. Thus, we may 

speak of the class Mammal, which represents the characteristics common to all mammals. 

To identify a particular mammal in this class, we must speak of "this mammal” or "that 

mammal." 

A class is a set of objects that share a common structure and a common behavior. 

A single object is simply an instance of a class. 

 
 



A class represents a set of objects that share a common structure and a common 

behavior. 

Interface and Implementation 
Meyer  and Snyder  have both suggested that programming is largely a matter of 

"contracting": the various functions of a larger problem are decomposed into smaller 

problems by subcontracting them to different elements of the design. Nowhere is this idea 

more evident than in the design of classes. Whereas an individual object is a concrete 

entity that performs some role in the overall system, the class captures the structure and 

behavior common to all related objects. Thus, a class serves as a sort of binding contract 

between an abstraction and all of its clients. By capturing these decisions in the interface 

of a class, a strongly typed programming language can detect violations of this contract 

during compilation. 

We can further divide the interface of a class into three parts: 

• Public           

 A declaration that is accessible to all clients 

• Protected       

A declaration that is accessible only to the class itself, its 

subclasses, and its friends 

• Private 

 A declaration that is accessible only to the class itself and its friends 

 

 

 

 

 

Class Life Cycle 
We may come to understand the behavior of a simple class just by understanding the 

semantics of its distinct public operations in isolation. However, the behavior of more 

interesting classes (such as moving an instance of the class DisplayItem, or scheduling an 

instance of the class TemperatureController) involves the interaction of their various 

operations over the lifetime of each of their instances. 

 

Relationships Among Classes 
Consider for a moment the similarities and differences among the following classes of 

objects: 

flowers, daisies, red roses, yellow roses, petals, and ladybugs. We can make the following 

observations: 

• A daisy is a kind of flower. 

• A rose is a (different) kind of flower. 

• Red roses and yellow roses are both kinds of roses. 

• A petal is a part of both kinds of flowers. 

• Ladybugs eat certain pests such as aphids, which may be infesting certain kinds of 

flowers.  

. Specifically, most object-oriented languages provide direct support for some 

combination of the following relationships: 

• Association 



• Inheritance 

• Aggregation 

• Using 

• Instantiation 

• Metaclass 

 

Association 

 
Example In an automated system for retail point of sale, two of our key abstractions 

include products and sales. As shown in Figure 3-4, we may show a simple association 

between these two classes: the class Product denotes the products sold as part of a sale, and 

the class Sale denotes the transaction through which several products were last sold. By 

implication, this association suggests bidirectional navigation: given an instance of Product, 

we should be able to locate the object denoting its sale, and given an instance of Sale, we 

should be able to locate 

all the products sold during the transaction. 

 
Figure 3-4   Association 

Inheritance 
Examples After space probes are launched, they report back to ground stations with 

information regarding the status of important subsystems (such as electrical power and 

propulsion systems) and different sensors (such as radiation sensors, mass spectrometers, 

cameras, micro meteorite collision detectors, and so on). Collectively, this relayed 

information is called telemetry data. Telemetry data is commonly transmitted as a bit 

stream consisting of a header, which includes a time stamp and some keys identifying the 

kind of information that follows, plus several frames of processed data from the various 

subsystems and sensors. Because this appears to be a straightforward aggregation of 

different kinds of data, we might be tempted to define a record type for each kind of 

telemetry data. For example, in C++, we might write 



 
 

A subdass may inherit the structure and behavior of its superdass. 

Single Inheritance Simply stated, inheritance is a relationship among classes wherein one 

class shares the structure and/or behavior defined in one (single inheritance) or more 

(multiple inheritance) other classes. We call the class from which another class inherits its 

superclass. In our example, TelemetryData is a superclass of ElectricalData. Similarly, we call a 

class that inherits from one or more classes a subclass; ElectricalData is a subclass of 

TelemetryData. Inheritance therefore defines an "is a" hierarchy among classes, in which a 

subclass inherits from one or more superclasses. This is in fact the litmus test for 

inheritance given classes A and B, if A "is not a" kind of B, then A should not be a 

subclass of B. In this sense, ElectricalData is a specialized kind of the more generalized class 

TelemetryData. The ability of a language to support this kind of inheritance distinguishes 

object-oriented from object-based programming languages. 



 

Figure 3-5          Single Inheritance 

 

Multiple Inheritance With single inheritance, each subclass has exactly one superclass. 

However, as Vlissides and Linton point out, although single inheritance is very useful, "it  

often forces the programmer to derive from one of two equally attractive classes. This 

limits the applicability of predefined classes, often making it necessary to duplicate code. 

For example, there is no way to derive a graphic that is both a circle and a picture; one 

must derive from one or the other and reimplement the functionality of the class that was 

excluded" [40]. Multiple inheritance is supported directly by languages such as C++ and 

CLOS and, to a limited degree, by Smalltalk. The need for multiple inheritance in 

objectoriented programming languages is still a topic of great debate. In our experience, 

we find multiple inheritance to be like a parachute: you don't aIways need it, but when 

you do, you're really happy to have it on hand. 

 
 

Figure 3-7   Multiple Inheritance 

 



 

Aggregation 
Example Aggregation relationships among classes have a direct parallel to aggregation 

relationships among the objects corresponding to these classes. 

 
Figure 3-8     Aggregation 

 

Using 
Example Our carlier example of the rampController and growingRamp objects illustrated a link 

between the two objects, which we represented via a "using" relationship between their 

corresponding classes, TemperatureController and TemperatureRamp: 

 
Figure 3-9   The "Using" Relationship\ 

 

Instantiation 
Examples Our earlier declaration of the class Queue was not very satisfying because its 

abstraction was not type-safe. We can vastly improve our abstraction by using languages 

such as Ada, C++, and Eiffel that support genericity. 

For example, we might rewrite our earlier class declaration using a parameterized class in 

C++: 

 



Figure 3-10    Instantiation 

 

Metaclass 
We have said that every object is an instance of some class. What if we treat a class itself 

as an object that can be manipulated? To do so, we must ask, What is the class of a class? 

The answer is simply, a metaclass. To state it another way, a metaclass is a class whose 

instances are themselves classes. Languages such as Smalltalk and CLOS support the 

concept of a metaclass directly; C++ does not. Indeed, the idea of a metaclass takes the 

idea of the object model to its natural completion in pure object-oriented programming 

languages. 

 
Figure 3-11     Metaciasses 

 

 

 

Interplay of Classes and Objects 

 

Relationships Between Classes and Obiects 
Clases and object are separate yet intimately related concepts. Specifically, every object is 

the 

instance of some class, and every class has zero or more instances. For practically all 

applications, classes are static; therefore, their existence, semantics, and relationships are 

fixed prior to the execution of a program. Similarly, the class of most objects is static, 

meaning that once an object is created, its class is fixed. In sharp contrast, however, 

objects are typically created and destroyed at a furious rate during the li time of an 

application. For example, consider the classes and objects in the implementation of an 

traffic control system. Some of the more important abstractions include planes, flight 

plans, runways, and air spaces. By their very definition, the meanings of these classes of 

objects are relatively static. They must be static, for otherwise one could not build an 

application that embodied knowIedge of such commonsense facts as that planes can take 

off, fly, and then land, and that two planes should not occupy the same space at the same 

time. Conversely, the instances of these classes are dynamic. At a fairly slow rate, new 

runways are built, and old ones are deactivated. Faster yet, new flight plans are filed, and 

old ones are filed away. With great frequency, new planes enter a particular air space, and 

old ones leave. 

 



Role of Classes and Objects in Analysis and Design 
During analysis and the early stages of design, the developer has two primary tasks: 

• Identify the classes and objects that form the vocabulary of the problem domain. 

• Invent the structures whereby sets of objects work together to provide the behaviors 

that satisfy the requirements of the problem. 

Collectively, we call such classes and objects the key abstractions of the problem, and we 

call 

these cooperative structures the mechanisms of the implementation. During these phases 

of development, the focus of the developer must be upon the outside view of these key 

abstractions and mechanisms. This view represents the logical framework  of the system, 

and therefore encompasses the class structure and object structure of the system. In the 

later stages of design and then moving into implementation, the task of the developer 

changes: the focus is on the inside view of these key abstractions and mechanisms, 

involving their physical representation. We may express these design decisions as part of 

the system's module architecture and process architecture. 

 

The Importance of Proper Classification 

 

Classification and Object-Oriented Development 
The identification of classes and objects is the hardest part of object-oriented analysis and 

design. Our experience shows that identification involve both discovery and invention. 

Through discovery, we come to recognize the key abstractions and mechanisms that form 

the 

vocabulary of our problem domain. Through invention, we devise generalized 

abstractions as 

well as new mechanisms that specify how objects collaborate. Ultimately, discovery and 

invention are both problems of classification, and classification is fundamentally a 

problem of finding sameness. When we classify, we seek to group things that have a 

common structure or exhibit a common behavior. Intelligent classification is actually a 

part of all good science. As Michalski and Stepp observe, "An omnipresent problem in 

science is to construct meaningful classifications of observed objects or situations. Such 

classifications facilitate human comprehension of the observations and the subsequent 

development of a scientific theory". The same philosophy applies to engineering. In the 

domain of building architecture and city planning, Alexander notes that, for the architect, 

"his act of design, whether humble, or gigantically complex, is governed entirely by the 

patterns he has in his mind at that moment, and his ability to combine these patterns to 

form a new design" [3]. Not surprisingly, then, classification is relevant to every aspect of 

object-oriented design. Classification helps us to identify generalization, specialization, 

and aggregation hierarchies among classes. By recognizing the common pattems of 

interaction among objects, we come to invent the mechanisms that serve as the soul of our 

implementation. Classification also guides us in making decisions about modularization. 

We may choose to place certain classes and objects together in the same module or in 

different modules, depending upon the sameness we find among these declarations; 

coupling and cohesion are simply measures of this sameness. Classification also plays a 

role in allocating processes to processors. We place certain processes together in the same 

processor or different processors, depending upon packaging, performance, or reliability 

concerns. 

 



The Difficulty of Classification 
Examples of Classification In the previous chapter, we defined an object as something 

that has a crisply defined boundary. However, the boundaries that distinguish one object 

from another are often quite fuzzy. For example, look at your leg. Where does your knee 

begin, and where does it end? In recognizing human speech, how do we know that certain 

sounds connect to form a word, and are not instead a part of any surrounding words? 

Consider also the design of a word processing system. Do characters constitute a class, or 

are whole words a better choice? How do we treat arbitrary, noncontiguous selections of 

text? Also, what about sentences, paragraphs, or even whole documents: are these classes 

of objects relevant to our problem? The fact that intelligent classification is difficult is 

hardly new information. Since there are parallels to the same problems in object-oriented 

design, consider for a moment the problems of classification in two other scientific 

disciplines: biology and chemistry. Until the eighteenth century, the prevailing scientific 

thought was that all living organisms could be arranged from the most simple to the most 

complex, with the measure of complexity being highly subjective (not surprisingly, 

humans were usually placed at the top of this list). In the mid-1700s, however, the 

Swedish botanist Carolus Lirmaeus suggested a more detailed taxonomy for categorizing 

organisms, according to what he called genus and species. A century later, Darwin 

proposed the theory that natural selection was the mechanism of evolution, whereby 

present-day species evolved from older ones. Darwin's theory depended upon an 

intelligent classification of species. As Darwin himself states, naturalists "try to arrange 

the species, genera, and families in each class, on what is called the natural system. But 

what is meant by this system? Some authors look at it merely as a scheme for arranging 

together those living objects which are most alike, and for separating those which are 

most unlike" [4]. In contemporary biology, classification denotes "the establishment of a 

hierarchical system of categories on the basis of presumed natural relationships among 

organisms" [5]. The most general category in a biological taxonomy is the kingdom, 

followed in order of increasing specialization, by phylum, subphylum, class, order, 

family, genus, and, finally, species. Historically, a particular organism is placed in a 

specific category according to its body structure, internal structural characteristics, and 

evolutionary relationships. 

 

The Incremental and lterative Nature of Classification We have not said all this to 

defend lengthy software development schedules, although to the manager or end user, it 

does sometimes seem that software engineers need centuries to complete their work. 

Rather, we have told these stories to point out that intelligent classification is 

intellectually hard work, and that it best comes about through an incremental and iterative 

process. This incremental and iterative nature is evident in the development of such 

diverse software technologies as graphical user interfaces, database standards, and even 

fourth-generation languages. As Shaw has observed in software engineering, "The 

development of individual abstractions often follows a common pattern. First, problems 

are solved ad hoc. As experience accumulates, some solutions turn out to work better than 

others, and a sort of folklore is passed informally from person to person. Eventually, the 

useful solutions are understood more systematically, and they are codified and analyzed. 

This enables the development of models that support automatic implementation and 

theories that allow the generalization of the solution. 



 
Different observers will classify the same object in different ways. 
 

 
Identifying Classes and Objects 

 

Classical and Modern Approaches 
The problem of classification has been the concern of countless philosophers, linguists, 

cognitive scientists, and mathematicians, even since before the time of Plato. It is 

reasonable to study their experiences and apply what we learn to object-oriented design. 

Historically, there have only been three general approaches to classification: 

• Classical categorization 

• Conceptual clustering 

• Prototype theory  

Classical Categorization In the classical approach to categorization, "All the entities that 

have a given property or collection of properties in common form a category. Such 

properties 

are necessary and sufficient to define the category" . For example, married people 

constitute a category: one is either married or not, and the value of this property is 

sufficient to decide to which group a particular person belongs. On the other hand, tall 

people do not form a category, unless we can agree to some absolute criteria for what 

distinguishes the property of tall from short. Classical categorization comes to us first 

from Plato, and then from Aristotle through his classification of plants and animals, in 

which he uses a technique much akin to the contemporary children's game of Twenty 

Questions (Is it an animal, mineral, or vegetable? Does it have fur or feathers? Can it fly? 

Does is smell?) . Later philosophers, most notably Aquinas, Descartes, and Locke, 

adopted this approach. As Aquinas stated, "We can name a thing according to the 

knowledge we have of its nature from its properties and effects" 



 

 

Conceptual Clustering Conceptual clustering is a more modern variation of the classical 

approach, and largely derives from attempts to explain how knowledge is represented. As 

Stepp and Michalski state, "In this approach, classes (clusters of entities) are generated by 

first formulating conceptual descriptions of these classes and then classifying the entities 

according to the descriptions". For example, we may state a concept such as "a love 

song." This is a concept more than a property, for the "love songness" of any song is not 

something that may be measured empirically. However, if we decide that a certain song is 

more of a love song than not, we place it in this category. Thus, conceptual clustering 

represents more of a probabilistic clustering of objects. 

 

Prototype Theory Classical categorization and conceptual clustering are sufficiently 

expressive to account for most of the classifications we ever need in the design of 

complex software systems. However, there are still some situations in which these 

approaches are inadequate. This leads us to the more recent approach to classification, 

called prototype theory, which derives primarily from the work of Rosch and her 

colleagues in the field of cognitive psychology  

 

Object-Oriented Analysis 
The boundaries between analysis and design are fuzzy, although the focus of each is quite 

distinct. In analysis, we seek to model the world by discovering the classes and objects 

that form the vocabulary of the problem domain, and in design, we invent the abstractions 

and mechanisms that provide the behavior that this model requires 

 

Key Abstractions and Mechanisms 

 

Identifying Key Abstractions 
Finding Key Abstractions A key abstraction is a class or object that forms part of the 

vocabulary of the problem domain. The primary value of identifying such abstractions is 

that 

they give boundaries to our problem; they highlight the things that are in the system and 

therefore relevant to our design, and suppress the things that are outside the system and 

therefore superfluous. The identification of key abstractions is highly domain-specific. As 

Goldberg states, the "appropriate choice of objects depends, of course, on the purposes to 

which the application will be put and the granularity of information to be manipulated". 

As we mentioned earlier, the identification of key abstractions involves two processes: 

discovery and invention. Through discovery, we come to recognize the abstractions used 

by domain experts; if the domain expert talks about it, then the abstraction is usually 

important. Through invention, we create new classes and objects that are not necessarily 

part of the problem domain, but are useful artifacts in the design or implementation. For 

example, a customer using an automated teller speaks in terms of accounts, deposits, and 

withdrawals; these words are part of the vocabulary of the problem domain. A developer 

of such a system uses these same abstractions, but must also introduce new ones, such as 

databases, screen managers, lists, queues, and so on. These key abstractions are artifacts 

of the particular design, not of the problem domain. 

 



Refining Key Abstractions Once we identify a certain key abstraction as a candidate, we 

must evaluate it according to the metrics described in the previous chapter. As Stroustrup 

suggests, "Often this means that the programmer must focus on the questions: how are 

objects of this class created? can objects of this class be copied and/or destroyed? What 

operations can be done on such objects? If there are no good answers to such questions, 

the concept probably wasn't 'clean' in the first place, and it might be a good idea to think a 

bit more about the problem and the proposed solution instead of immediately starting to 

'code around' the problems" 

 

Identifying Mechanisms 
 

Finding Mechanisms In the previous chapter, we used the term mechanism to describe 

any structure whereby objects collaborate to provide some behavior that satisfies a 

requirement of the problem. Whereas the design of a class embodies the knowledge of 

how individual objects behave, a mechanism is a design decision about how collections of 

objects cooperate. Mechanisms thus represent patterns of behavior. For example, consider 

a system requirement for an automobile: pushing the accelerator should cause the engine 

to run faster, and releasing the accelerator should cause the engine to run slower. How this 

actually comes about is absolutely immaterial to the driver. Any mechanism may be 

employed as long as it delivers the required behavior, and thus which mechanism is 

selected is largely a matter of design choice. More specifically, any of the following 

designs might be considered: 

• A mechanical linkage from the accelerator to the carburetor (the most common 

mechanism). 

• An electronic linkage from a pressure sensor below the accelerator to a computer that 

controls the carburetor (a drive-by-wire mechanism). 

• No linkage exists; the gas tank is placed on the roof of the car, and gravity causes fuel to 

flow to the engine. Its rate of flow is regulated by a clip around the fuel line; pushing on 

the accelerator pedal eases tension on the clip, causing the fuel to flow faster (a low-cost 

mechanism). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


