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UNIT-I 

INTRODUCTION 

The Structure of Complex systems: 

Examples of Complex Systems 

The Structure of a Personal Computer A personal computer is a device of 

moderatecomplexity. Most of them are composed of the same major elements: a central 

processing unit (CPU), a monitor, a keyboard, and some sort of secondary storage device, 

usually either a floppy disk or a hard disk drive. We may take any one of these parts and 

further decompose 

 

The Structure of Plants and Animals In botany, scientists seek to understand the 

similarities and differences among plants through a study of their morphology, that is, 

their form and structure. Plants are complex multicellular organisms, and from the 

cooperative activity of various plant organ systems arise such complex behaviors as 

photosynthesis and transpiration. Plants consist of three major structures (roots, stems, 

and leaves), and each of these has its own structure. For example, roots encompass branch 

roots, root hairs, the root apex, and the root cap. Similarly, a cross-section of a leaf reveals 

its epidermis, mesophyll, and vascular tissue. Each of these structures is further composed 

of a collection of cells, and inside each cell we find yet another level of complexity, 

encompassing such elements as chloroplasts, a nucleus, and so on. As with the structure of 

a computer, the parts of a plant form a hierarchy, and each level of this hierarchy 

embodies its own complexity. 

 

The Structure of Matter The study of fields as diverse as astronomy and nuclear physics 

provides us with many other examples of incredibly complex systems. Spanning these two 

disciplines, we find yet another structural hierarchy. Astronomers study galaxies that are 

arranged in clusters, and stars, planets, and various debris are the constituents of galaxies. 

Likewise, nuclear physicists are concerned with a structural hierarchy, but one on an 

entirely different scale. Atoms are made up of electrons, protons, and neutrons; electrons 

appear to be elementary particles, but protons, neutrons, and other particles are formed 

from more basic components called quarks. 

 

The Structure of Social Institutions As a final example of complex systems, we turn to 

the 

structure of social institutions. Groups of people join together to accomplish tasks that 

cannot be done by individuals. Some organizations are transitory, and some endure 

beyond many lifetimes. As organizations grow larger, we see a distinct hierarchy emerge. 

Multinational corporations contain companies, which in turn are made up of divisions, 

which in turn contain branches, which in turn encompass local offices, and so on. If the 

organization endures, the boundaries among these parts may change, and over time, a 

new, more stable 

hierarchy may emerge. 

The relationships among the various parts of a large organization are just like those found 

among the components of a computer, or a plant, or even a galaxy. Specifically, the 

degree of interaction among employees within an individual office is greater than that 

between employees of different offices. A mail clerk usually does not interact with the 



chief executive officer of a company but does interact frequently with other people in the 

mail room. Here too, these different levels are unified by common mechanisms. The clerk 

and the executive are both paid by the same financial organization, and both share 

common facilities, such as the company's telephone system, to accomplish their tasks. 

The Inherent Complexity of Software: 

 

The Properties of Simple and Complex Software Systems 
A dying star on the verge of collapse, a child learning how to read, white blood cells 

rushing to attack a virus: these are but a few of the objects in the physical world that 

involve truly awesome complexity. Software may also involve elements of great 

complexity; however, the complexity we find here is of a fundamentally different kind. As 

Brooks points out, "Einstein argued that there must be simplified explanations of nature, 

because God is not capricious or arbitrary. No such faith comforts the software engineer. 

Much of the complexity that he must master is arbitrary complexity We do realize that 

some software systems are not complex. These are the largely forgettable applications that 

are specified, constructed, maintained, and used by the same person, usually the amateur 

programmer or the professional developer working in isolation. This is not to say that all 

such systems are crude and inelegant, nor do we mean to belittle their creators. Such 

systems tend to have a very limited purpose and a very short life span. We can afford to 

throw them away and replace them with entirely new software rather than attempt to reuse 

them, repair them, or extend their functionality, Such applications are generally more 

tedious than difficult to develop; consequently, learning how to design them does not 

interest us. 

Why Software Is Inherently Complex 
As Brooks suggests, "The complexity of software is an essential property, not an 

accidental one" . We observe that this inherent complexity derives from four elements: the 

complexity of the problem domain, the difficulty of managing the developmental process, 

the flexibility possible through software, and the problems of characterizing the behavior 

of discrete systems. 

The Complexity of the Problem Domain The problems we try to solve in software often 

involve elements of inescapable complexity, in which we find a myriad of competing 

perhaps even contradictory, requirements. Consider the requirements for the electronic 

system of a multi-engine aircraft, a cellular phone switching system, or an autonomous 

robot. The raw functionality of such systems is difficult enough to comprehend, but now 

add all of the (often implicit) nonfunctional requirements such as usability, performance, 

cost, survivability, and reliability. This unrestrained external complexity is what causes 

the arbitrary complexity about which Brooks writes. 

This external complexity usually springs from the "impedance mismatch" that exists 

between the users of a system and its developers: users generally find it very hard to give 

precise expression to their needs in a form that developers can understand In extreme 

cases, users may have only vague ideas of what they want in a software system. This is 

not so much the fault of either the users or the developers of a system; rather, it occurs 

because each group generally lacks expertise in the domain of the other. Users and 

developers have different perspectives on the nature of the problem and make different 

assumptions regarding the nature of the solution. Actually, even if users had perfect 

knowledge of their needs, we currently have few instruments for precisely capturing these 

requirements. The common way of expressing requirements today is with large volumes 

of text, occasionally accompanied by a few drawings. Such documents are difficult to 



comprehend, are open to varying interpretations, and too often contain elements that are 

designs rather than essential requirements. 

The Difficulty of Managing the Development Process The fundamental task of the 

software development team is Lo engineer the illusion of simplicity - to shield users from 

this vast and often arbitrary external complexity. Certainly, size is no great virtue in a 

software system. We strive to write less code by inventing clever and powerful 

mechanisms that give 

us this illusion of simplicity, as well as by reusing frame-works of existing designs and 

code. However, the sheer volume of a system's requirements is sometimes inescapable 

and forces us cither to write a large amount of new software or to reuse existing software 

in novel ways. Just two decades ago, assembly language programs of only a few thousand 

lines of code stressed the limits of our software engineering abilities. Today, it is not 

unusual to find delivered systems whose size is measured in hundreds of thousands, or 

even millions of lines of code (and all of that in a high-order programming language, as 

well). No one person can ever understand such a system completely. Even if we 

decompose our implementation in meaningful ways, we still end up with hundreds and 

sometimes thousands of separate modules. This amount of work demands that we use a 

team of developers, and ideally we use as small a team as possible. However, no matter 

what its size, there are always significant challenges associated with team development. 

More developers means more complex communication and hence more difficult 

coordination, particularly if the team is geographically dispersed, as is often the case in 

very large projects. With a team of developers, the key management challenge is always 

to maintain a unity and integrity of design. 

The Flexibility Possible Through Software A home-building company generally does 

not operate its own tree farm from which to harvest trees for lumber; it is highly unusual 

for a construction firm to build an on-site steel mill to forge custom girders for a new 

building. Yet in the software industry such practice is common. Software offers the 

ultimate flexibility, so it is possible for a developer to express almost any kind of 

abstraction. This flexibility turns out to be an incredibly seductive property, however, 

because it also forces the developer to craft virtually all the primitive building blocks 

upon which these higher-level abstractions stand. While the construction industry has 

uniform building codes and standards for the quality of raw materials, few such standards 

exist in the software industry. As a result, software development remains a labor-intensive 

business. 

The Problems of Characterizing the Behavior of Discrete Systems If we toss a ball 

into 

the air, we can reliably predict its path because we know that under normal conditions, 

certain laws of physics apply. We would be very surprised if just because we threw the 

ball a little harder, halfway through its flight it suddenly stopped and shot straight up into 

the air2 in a not-quite-debugged software simulation of this ball's motion, exactly that kind 

of behavior can easily occur. 

 

The Five Attributes of a Complex System 
1. "Frequently, complexity takes the form of a hierarchy, whereby a complex system is 

composed of interrelated subsystems that have in turn their own subsystems, and so on, 

until some lowest level of elementary components is reached 

 

2. The choice of what components in a system are primitive is relatively arbitrary and is 

largely up to the discretion of the observer of the system. 



 

3. “Intracomponent linkages are generally stronger than intercommoning linkages. This 

fact has the effect of separating the high-frequency dynamics of the components - 

involving the internal structure of the components - from the low-frequency dynamics - 

involving interaction among components 

 

4. "Hierarchic systems are usually composed of only a few different kinds of subsystems 

in 

various combinations and arrangements 

 

5. “A complex system that works is invariably found to have evolved from a simple 

system that worked.... A complex system designed from scratch never works and cannot 

be patched up to make it work. You have to start over, beginning with a working simple 

system " 

 

Organized and Disorganized Complexity 
 

The Canonical Form of a Complex System The discovery of common abstractions and 

mechanisms greatly facilitates our understanding of complex systems. For example, with 

just a few minutes of orientation, an experienced pilot can step into a multiengine jet 

aircraft he or she has never flown before and safely fly the vehicle. Having recognized the 

properties common to all such aircraft, such as the functioning of the rudder, ailerons, and 

throttle, the pilot primarily needs to learn what properties are unique to that particular 

aircraft. If the pilot already knows how to fly a given aircraft, it is far easier to know how 

to fly a similar one. This example suggests; that we have been using the term hierarchy in 

a rather loose fashion. Most interesting systems do not embody a single hierarchy; instead, 

we find that many different hierarchies are usually present within the same complex 

system. For example, an aircraft may be studied by decomposing it into its propulsion 

system, flight-control system, and so on. This decomposition represents a structural, or 

"part of" hierarchy. Alternately, we can cut across the system in an entirely orthogonal 

way. For example, a turbofan engine is a specific kind of jet engine, and a Pratt and 

Whitney TF30 is a specific kind of turbofan engine. Stated another way, a jet engine 

represents a generalization of the properties common to every kind of jet engine; a 

turbofan engine is simply a specialized kind of jet engine, with 

properties that distinguish it, for example, from ramjet engines. 



 
 
Figure 1-1 
The Canonical Form of a Complex System 
 

 

 

Combining the concept of the class and object structure together with the five attributes of 

a 

complex system, we find that virtually all complex systems take en the same (canonical) 

form, as we show in Figure 1-1. Here we see the two orthogonal hierarchies of the system: 

its class structure and its object structure. Each hierarchy is layered, with the more 

abstract classes and objects built upon more primitive ones. What class or object is chosen 

as primitive is relative to the problem at hand, Especially among the parts of the object 

structure, there are close collaborations among objects at the same level of abstraction, 

Looking inside any given level reveals yet another level of complexity. Notice also that 

the class structure and the object structure are not completely independent; rather, each 

object in the object structure represents a specific instance of some class. As the figure 

suggests, there are usually many more objects than classes of objects within a complex 

system. Thus, by showing the "part of" as well as the "is a" hierarchy, we explicitly 

expose the redundancy of the system under consideration, lf we did not reveal a system's 

class structure, we would have to duplicate our knowledge about the properties of each 

individual part. With the inclusion of the class structure, we capture these common 

properties in one place. 

 

The Limitations of the Human Capacity for Dealing with Complexity If we know 

what the design of complex software systems should be like, then why do we still have 

serious problems in successfully developing them? As we discuss in the next chapter, this 

concept of the organized complexity of software (whose guiding principles we call the 



object model) is relatively new. However, there is yet another factor that dominates: the 

fundamental limitations of the human capacity for dealing with complexity. As we first 

begin to analyze a complex software system, we find many parts that must interact in a 

multitude of intricate ways, with little perceptible commonality among either the parts or 

their interactions: this is an example of disorganized complexity. As we work to bring 

organization to this complexity through the process of design, we must think about many 

things at once. 

 

Bringing Order to Chaos 

 

The Role of Decomposition 
As Dijkstra suggests, “The technique of mastering complexity has been known since 

ancient 

times: divide et impera (divide and rule)" [16]. When designing a complex software 

system, it is essential to decompose it into smaller and smaller parts, each of which we 

may then refine independently. In this manner, we satisfy the very real constraint that 

exists upon the channel capacity of human cognition: to understand any given level of a 

system, we need only comprehend a few parts (rather than all parts) at once. Indeed, as 

Parnas observes, intelligent decomposition directly addresses the inherent complexity of 

software by forcing a division of a system's state space 

Algorithmic Decomposition Most of us have been formally trained in the dogma of 

topdown 

structured design, and so we approach decomposition as a simple matter of algorithmic 

decomposition, wherein each module in the system denotes a major step in some overall 

process. Figure 1-2 is an example of one of the products of structured design, a structure 

chart that shows the relationships among various functional elements of the solution. This 

particular structure chart illustrates part of the design of a program that updates the 

content of a master file. It was automatically generated from a data flow diagram by an 

expert system tool that embodies the rules of structured design 

 

 

 
Figure 1-2 
Algorithmic Decomposition 

 



Object-Oriented Decomposition We suggest that there is an alternate decomposition 

possible for the same problem. In Figure 1-3, we have decomposed the system according 

to 

the key abstractions in the problem domain. Rather than decomposing the problem into 

steps 

such as Get formatted update and Add check sum , we have identified objects such as 

Master File and Check Sum, which derive directly from the vocabulary of the problem 

domain. Although both designs solve the same problem, they do so in quite different 

ways. In this second decomposition, we view the world as a set of autonomous agents that 

collaborate to perform some higher level behavior. Get formatted update thus does not 

exist as an independent algorithm; rather, it is an operation associated with the object File 

of Updates. Calling this operation creates another object, Update to Card. In this manner, 

each object in our solution embodies its own unique behavior, and each one models some 

object in the real world. From this perspective, an object is simply a tangible entity which 

exhibits some welldefined behavior. Objects do things, and we ask them to perform what 

they do by sending them messages. Because our decomposition is based upon objects and 

not algorithms, we call this an object-oriented decomposition 

 

Figure 1-3 
Object-Oriented Decomposition 
 

Algorithmic versus Object-Oriented Decomposition Which is the right way to 

decompose 

a complex system - by algorithms or by objects? Actually, this is a trick question, because 

the 

right answer is that both views are important: the algorithmic view highlights the ordering 

of 

events, and the object-oriented view emphasizes the agents that either cause action or are 

the 

subjects upon which these operations act. However, the fact remains that we cannot 

construct 



a complex system in both ways simultaneously, for they are completely orthogonal 

views4. We must start decomposing a system either by algorithms or by objects, and then 

use the resulting structure as the framework for expressing the other perspective. 

 

Designing Complex Systems 

 

Engineering as a Science and an Art 
The practice of every engineering discipline - be it civil, mechanical, chemical, electrical, 

or 

software engineering - involves elements of both science and art. As Petroski eloquently 

states, "The conception of a design for a new structure can involve as much a leap of the 

imagination and as much a synthesis of experience and knowledge as any artist is required 

to bring to his canvas or paper. And once that design is articulated by the engineer as 

artist, it must be analyzed by the engineer as scientist in as rigorous an application of the 

scientific method as any scientist must make" [38]. Similarly, Dijkstra observes that "the 

programming challenge is a large-scale exercise in applied abstraction and thus requires 

the abilities of the formal mathematician blended with the attitude of the competent 

engineer 

 

The Meaning of Design 
In every engineering discipline, design encompasses the disciplined approach we use to 

invent a solution for some problem, thus providing a path from requirements to 

implementation. In the context of software engineering, Mostow suggests that the purpose 

of design is to construct a system that: 

• "Satisfies a given (perhaps informal) functional specification 

• Conforms to limitations of the target medium 

• Meets implicit or explicit requirements on performance and resource usage 

• Satisfies implicit or explicit design criteria on the form of the artifact 

• Satisfies restrictions on the design process itself, such as its length or cost, or the tools 

available for doing the design 

 

The Elements of Software Design Methods  

Clearly, there is no magic, no "silver bullet” that: can unfailingly lead the software 

engineer down the path from requirements to the implementation of a complex software 

system. In fact, the design of complex software systems does not lend itself at all to 

cookbook approaches. Rather, as noted earlier in the fifth attribute of complex systems, 

the design of such systems involves an incremental and iterative process. Still, sound 

design methods do bring some much-needed discipline to the development process. The 

software engineering community has evolved dozens of, different design methods, which 

we can loosely classify into three categories (see sidebar). Despite their differences, all of 

these methods have elements in common. Specifically, each method 

includes the following: 

 

 

 

• Notation The language for expressing each model 

• Process The activities leading to the orderly construction of the system's models 



• Tools The artifacts that eliminate the tedium of model building and enforce rules about 

the models themselves, so that errors and inconsistencies can be exposed 

 

The Models of Object-Oriented Development  

Is there a "best” design method? No, there is no absolute answer to this question, which is 

actually just a veiled way of asking the earlier question: What is the best way to 

decompose a complex system? To reiterate, we have found great value in building models 

that are focused up on the "things" we find, in the problem space, forming what we refer 

to as an object-oriented decomposition Object-oriented analysis and design is the method 

that leads us to an object-oriented decomposition. By applying object-oriented design, we 

create software that is resilient to change and written with economy of expression. We 

achieve a greater level of confidence in the correctness of our software through an 

intelligent separation of its state space. Ultimately, we reduce the risks that are inherent in 

developing complex software systems 

 

 
 

 Figure 1-4 
The Models of Object-Oriented Development 

 

Evolution of the Object Model 

Trends in Software Engineering 
The Generations of Programming Languages As we look back upon the relatively brief 

yet 

colorful history of software engineering, we cannot help but notice two sweeping trends: 

• The shift in focus from programming-in-the-small to programming-in-the-large 

• The evolution of high-order programming languages 

Most new industrial-strength software systems are larger and more complex than their 

predecessors were even just a few years ago. This growth in complexity has prompted a 

significant amount of useful applied research in software engineering, particularly with 

regard to decomposition, abstraction, and hierarchy. The development of more expressive 



programming languages has complemented these advances. The trend has been a move 

away 

from languages that tell the computer what to do (imperative languages) toward languages 

that describe the key abstractions in the problem domain (declarative languages). Wegner 

has classified some of the more popular high-order programming languages in generations 

arranged according to the language features they first introduced: 

 

• First-Generation Languages (1954-1958) 

 

FORTRANI Mathematical expressions 

ALGOL 58 Mathematical expressions 

Flowmatic Mathematical expressions 

IPL V Mathematical expressions 

 

• Second-Generation Languages (1959~1961) 

FORTRANII Subroutines, separate compilation 

ALGOL 60 Block structure, data types 

COBOL Data description, file handling 

Lisp List processing, pointers, garbage collection 

 

• Third-Generation Languages (1962-1970) 

PL/1 FORTRAN + ALGOL + COBOL 

ALGOL 68 Rigorous successor to ALGOL 60 

Pascal Simple successor to ALGOL 60 

Simula Classes, data abstraction 

 

• The Generation Gap (1970-1980) 

Many different languages were invented, but few endured 

Foundations of the Object Model 

Structured design methods evolved to guide developers who were trying to build complex 

systems using algorithms as their fundamental building blocks. Similarly, object-oriented 

design methods have evolved to help developers exploit the expressive power of object-

based 

and object-oriented programming languages, using the class and object as basic building 

blocks. 

OOP, OOD, and OOA 
Because the object model derives from so many- disparate sources, it has unfortunately 

been accompanied by a muddle of terminology. A Smalltalk programmer uses methods, a 

C++ programmer uses virtual member functions, and a CLOS programmer uses generic 

functions. An Object Pascal programmer talks of a type coercion; an Ada programmer 

calls the same thing a type conversion. To minimize the confusion, let's define what is 

object-oriented and what is not. The glossary provides a summary of all the terms 

described here, plus many others. 

 

Object-Oriented Programming 



Object-oriented programming is a method of implementation in which programs are 

organized as cooperative collections of objects, each of which represents an instance of 

some class, and whose classes are all members of a hierarchy of classes united via 

inheritance relationships. 

Object-Oriented Design  

The emphasis in programming methods is primarily on the proper and effective use of 

particular language mechanisms. By contrast, design methods emphasize the proper and 

effective structuring of a complex system. What then is object-oriented design? We 

suggest that  Object-oriented design is a method of design encompassing the process of 

object-oriented decomposition and a notation for depicting both logical and physical as 

well as static and dynamic models of the system under design. 

 

Object-Oriented Analysis 

Object-oriented analysis is a method of analysis that examines requirements from the 

perspective of the classes and objects found in the vocabulary of the problem domain. 

 

 

Elements of the Object Model 

 
There are four major elements of this model: 

• Abstraction 

• Encapsulation 

• Modularity 

• Hierarchy 

 

There are three minor elements of the object model: 

• Typing 

• Concurrency 

• Persistence 

 

Abstraction 
An abstraction denotes the essential characteristics of an object that distinguish it from 

all other kinds of objects and thus provide crisply defined conceptual boundaries, relative 

to the perspective of the viewer. 

 

Encapsulation 

Encapsulation hides the details of the implementation of an object. 

Encapsulation is the process of compartmentalizing the elements of an abstraction that 

constitute its structure and behavior; encapsulation serves to separate the contractual 

interface of an abstraction and its implementation 

 

Modularity 
Modularity is the property of a system that has been decomposed into a set of cohesive 

and loosely coupled modules. 

Modularity packages abstractions into discrete units. 

 



Hierarchy 

 
The Meaning of Hierarchy Abstraction is a good thing, but in all except the most trivial 

applications, we may find many more different abstractions than we can comprehend at 

one time. Encapsulation helps manage this complexity by hiding the inside view of our 

abstractions. Modularity helps also, by giving us a way to cluster logically related 

abstractions. Still, this is not enough. A set of abstractions often forms a hierarchy, and by 

identifying these hierarchies in our ,design, we greatly simplify our understanding of the 

problem. Hierarchy is a ranking or ordering of abstractions. 

 

Typing 
Meaning of Typing The concept of a type derives primarily from the theories of abstract 

data 

types. As Deutsch suggests, "A type is a precise characterization of structural or 

behavioural properties which a collection of entities all share" [68]. For our purposes, we 

will use the terms type and class interchangeably9. Although the concepts of a type and a 

class are similar, we include typing as a separate element of the object model because the 

concept of a type places a very different emphasis upon the meaning of abstraction.  

Typing is the enforcement Of the class of an object, such, that objects of different types 

may not be interchanged, or at the most, they may be interchanged only in very restricted 

ways. 

 

Concurrency 
The Meaning of Concurrency For certain kinds of problems, an automated system may 

have to handle many different events simultaneously. Other problems may involve so 

much computation that they exceed the capacity of any single processor. In each of these 

cases, it is natural to consider using a distributed set of computers for the target 

implementation or to use processors capable of multitasking. A single process - also 

known as a thread of control is the root from which independent dynamic action occurs 

within a system. Every program has at least one thread of control, but a system involving 

concurrency may have many such threads: some that are transitory, and others that last the 

entire lifetime of the system's execution. Systems executing across multiple CPUs allow 

for truly concurrent threads of control, whereas systems running on a single CPU can only 

achieve the illusion of concurrent threads of control, usually by means of some time-

slicing algorithm.  

Concurrency is tbe properly that distinguisbes an active object from one tbat is not active. 

 

Persistence 
An object in software takes up some amount of space and exists for a particular amount of 

time. Atkinson et al. suggest that there is a continuum of object existence, ranging from 

transitory objects that arise within the evaluation of an expression, to objects in a database 

that outlive the execution of a single program. This spectrum of object persistence 

encompasses the following: 

• “Transient results in expression evaluation 

• Local variables in procedure activations 

• Own variables [as in ALGOL 60], global variables, and heap items whose extent is 

different from their scope 

• Data that exists between executions of a program 



• Data that exists between various versions of a program 

• Data that outlives the program 

Persistence is theproperty of an object tbrougb which its existence transcends time (i.e. 

tbe object continues to exist after its creator ceases to exist) and/or space (i. e. the objects 

location moves from the address space in wbich it was created). 

 

 

 

 

Applying the Object Model 

 

Benefits of the Object Model 
As we have shown, the object model is fundamentally different from the models 

embraced by 

the more traditional methods of structured analysis, structured design, and structured 

programming. This does not mean that the object model abandons all of the sound 

principles and experiences of these older methods. Rather, it introduces several novel 

elements that build upon these earlier models. Thus, the object model offers a number of 

significant benefits that other models simply do not provide. Most importantly, the use of 

the object model leads us to construct systems that embody the five attributes of well-

structured complex systems. In our experience, there are five other practical benefits to be 

derived from the application of the object model. 

 

Applications of the Object Model 
The object model has proven applicable to a wide variety of problem domains. many of 

the domains for which systems exist that may properly be called object-oriented. The 

Bibliography provides an extensive list of references to these and other applications. 

Object-oriented analysis and design may be the only method we have today that can be 

employed to attack the complexity inherent in very large systems. In all fairness, however, 

the use of object-oriented development may be ill-advised for some domains, not for any 

technical reasons, but for nontechnical ones, such as the absence of a suitably trained staff 

or a good development environment 

 

 

Open Issues 
To effectively apply the elements of the object model, we must next address several open 

issues: 

• What exactly are classes and objects? 

• How does one properly identify the classes and objects that are relevant to a particular 

application? 

• What is a suitable notation for expressing the design of an object-oriented system? 

• What process can lead us to a weil-structured object-oriented system? 

• What are the management implications of using object-oriented design? 
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