
13A05806 Python Programming

Department of CSE-GPCET

UNIT – II

1. Operators:

1. Arithmetic Operators

2. Comparison (Relational) Operators

3. Assignment Operators

4. Logical Operators, Bitwise Operators

5. Membership Operators

6. Identity Operators

1.1. Arithmetic Operators

Operator Description Example

+ Addition Adds values on either side of the

operator.

a + b = 30

- Subtraction Subtracts right hand operand from left

hand operand.

a – b = -10

*

Multiplication

Multiplies values on either side of the

operator

a * b = 200

/ Division Divides left hand operand by right hand

operand

b / a = 2

% Modulus Divides left hand operand by right hand

operand and returns remainder

b % a = 0

** Exponent Performs exponential (power) calculation

on operators

a**b =10 to the

power 20

// Floor Division - The division of operands

where the result is the quotient in which

the digits after the decimal point are

removed.

9//2 = 4 and

9.0//2.0 = 4.0

Example:

a = 21

b = 10

c = 0

c = a + b

print("a+b=",c)

c = a - b

print("a-b=" ,c)

c = a * b

print("a*b=" ,c)

c = a / b

print("a/b=" ,c)

c = a % b

print("a%b=", c)

13A05806 Python Programming

Department of CSE-GPCET

a = 2

b = 3

c = a**b

print("a pow b=", c)

a = 10

b = 5

c = a//b

print("a//b=" ,c)

Output

a+b= 31

a-b= 11

a*b= 210

a/b= 2.1

a%b= 1

a pow b= 8

a//b= 2

1.2. Relational Operators

These operators compare the values on either sides of them and decide the relation among them.

They are also called Relational operators.

Assume variable a holds 10 and variable b holds 20, then:

Example:

a = 21

Operato

r

Description Example

== If the values of two operands are equal, then the

condition becomes true.

(a == b) is not true.

!= If values of two operands are not equal, then

condition becomes true.

(a != b) is true.

<> If values of two operands are not equal, then

condition becomes true.

(a <> b) is true. This is

similar to != operator.

> If the value of left operand is greater than the

value of right operand, then condition becomes

true.

(a > b) is not true.

< If the value of left operand is less than the value of

right operand, then condition becomes true.

(a < b) is true.

>= If the value of left operand is greater than or equal

to the value of right operand, then condition

becomes true.

(a >= b) is not true.

<= If the value of left operand is less than or equal to

the value of right operand, then condition

becomes true.

(a <= b) is true.

13A05806 Python Programming

Department of CSE-GPCET

b = 10

if (a == b):

 print "Line 1 - a is equal to b"

else:

 print "Line 1 - a is not equal to b"

Output:

Line 1 - a is not equal to b

1.3 Python Assignment Operators

Assume variable a holds 10 and variable b holds 20, then:

Operator Description Example

= Assigns values from right side operands to

left side operand

c = a + b assigns

value of a + b into c

+=

Add AND

It adds right operand to the left operand and

assign the result to left operand

c += a is equivalent

to c = c + a

-=

Subtract

AND

It subtracts right operand from the left

operand and assign the result to left operand

c -= a is equivalent

to c = c - a

*=

Multiply

AND

It multiplies right operand with the left

operand and assign the result to left operand

c *= a is equivalent

to c = c * a

/=

Divide AND

It divides left operand with the right operand

and assign the result to left operand

c /= a is equivalent

to c = c / a

%=

Modulus

AND

It takes modulus using two operands and

assign the result to left operand

c %= a is

equivalent to c = c

% a

**=

Exponent

AND

Performs exponential (power) calculation on

operators and assign value to the left operand

c **= a is

equivalent to c = c

** a

//=

Floor

Division

It performs floor division on operators and

assign value to the left operand

c //= a is equivalent

to c = c // a

Example:

a = 21

b = 10

c = 0

c = a + b

print "Line 1 - Value of c is ", c

c += a

print "Line 2 - Value of c is ", c

c *= a

print "Line 3 - Value of c is ", c

13A05806 Python Programming

Department of CSE-GPCET

c /= a

print "Line 4 - Value of c is ", c

c = 2

c %= a

print "Line 5 - Value of c is ", c

c **= a

print "Line 6 - Value of c is ", c

c //= a

print "Line 7 - Value of c is ", c

Output

Line 1 - Value of c is 31

Line 2 - Value of c is 52

Line 3 - Value of c is 1092

Line 4 - Value of c is 52

Line 5 - Value of c is 2

Line 6 - Value of c is 2097152

Line 7 - Value of c is 99864

1.4 Python Bitwise Operators

Bitwise operator works on bits and performs bit by bit operation. Assume if a = 60; and b = 13;

Now in binary format they will be as follows:

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

There are following Bitwise operators supported by Python language

Operator Description Example

&

Binary AND

Operator copies a bit to the result if it

exists in both operands.

(a & b) = 12

(means 0000 1100)

| Binary OR It copies a bit if it exists in either

operand.

(a | b) = 61

(means 0011 1101)

^ Binary XOR It copies the bit if it is set in one operand

but not both.

(a ^ b) = 49 (means 0011 0001)

~

Binary Ones

Complement

It is unary and has the effect of 'flipping'

bits.

(~a) = -61 (means 1100 0011 in 2's

complement form due to a signed binary

number.

<<

Binary Left Shift

The left operands value is moved left by

the number of bits specified by the right

operand.

a << 2 = 240

(means 1111 0000)

>>

Binary Right

The left operands value is moved right

by the number of bits specified by the

a >> 2 = 15

(means 0000 1111)

13A05806 Python Programming

Department of CSE-GPCET

Shift right operand.

Example:

a = 60 # 60 = 0011 1100

b = 13 # 13 = 0000 1101

c = 0

c = a & b; # 12 = 0000 1100

print("a&b=",c)

c = a | b; # 61 = 0011 1101

print("a|b=",c)

c = a ^ b; # 49 = 0011 0001

print("a^b=",c)

c = ~a; # -61 = 1100 0011

print("~a=",c)

c = a << 2; # 240 = 1111 0000

print("a<<2",c)

c = a >> 2; # 15 = 0000 1111

print("a>>2",c)

Output:

#a&b= 12

#a|b= 61

#a^b= 49

#~a= -61

#a<<2 240

#a>>2 15

1. 5 Python Logical Operators

There are following logical operators supported by Python language. Assume variable a holds 10

and variable b holds 20 then:

Operator Description Example

and

Logical

AND

If both the operands are true then condition

becomes true.

(a and b) is true.

or

Logical

OR

If any of the two operands are non-zero

then condition becomes true.

(a or b) is true.

not

Logical

NOT

Used to reverse the logical state of its

operand.

Not (a and b) is false.

1.6 Python Membership Operators

Python‘s membership operators test for membership in a sequence, such as strings, lists, or tuples.

There are two membership operators as explained below:

13A05806 Python Programming

Department of CSE-GPCET

Operato

r

Description Example

in Evaluates to true if it finds a variable in the

specified sequence and false otherwise.

x in y, here in results in a 1 if

x is a member of sequence y.

not in Evaluates to true if it does not finds a variable in

the specified sequence and false otherwise.

x not in y, here not in results

in a 1 if x is not a member of

sequence y.

1.7 Python Identity Operators

Identity operators compare the memory locations of two objects. There are two Identity operators

as explained below:

Operato

r

Description Example

is Evaluates to true if the variables on either side of

the operator point to the same object and false

otherwise.

x is y, here is results in 1 if

id(x) equals id(y).

is not Evaluates to false if the variables on either side of

the operator point to the same object and true

otherwise.

x is not y, here is not results

in 1 if id(x) is not equal to

id(y).

2. Expressions and order of evaluations

Python Operators Precedence

The following table lists all operators from highest precedence to lowest

Operator Description

** Exponentiation (raise to the power)

~ + - Ccomplement, unary plus and minus (method

names for the last two are +@ and -@)

* / % // Multiply, divide, modulo and floor division

+ - Addition and subtraction

>> << Right and left bitwise shift

& Bitwise 'AND'

^ | Bitwise exclusive `OR' and regular `OR'

<= < > >= Comparison operators

<> == != Equality operators

= %= /= //= -= +=

*= **=

Assignment operators

is is not Identity operators

in not in Membership operators

not or and Logical operators

Operator precedence affects how an expression is evaluated.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher precedence

than +, so it first multiplies 3*2 and then adds into 7. Here, operators with the highest precedence

appear at the top of the table, those with the lowest appear at the bottom.

13A05806 Python Programming

Department of CSE-GPCET

a = 20

b = 10

c = 15

d = 5

e = 0

e = (a + b) * c / d #(30 * 15) / 5

print "Value of (a + b) * c / d is ", e

e = ((a + b) * c) / d # (30 * 15) / 5

print "Value of ((a + b) * c) / d is ", e

e = (a + b) * (c / d); # (30) * (15/5)

print "Value of (a + b) * (c / d) is ", e

e = a + (b * c) / d; # 20 + (150/5)

print "Value of a + (b * c) / d is ", e

When you execute the above program, it produces the following result:

Value of (a + b) * c / d is 90

Value of ((a + b) * c) / d is 90

Value of (a + b) * (c / d) is 90

Value of a + (b * c) / d is 50

3. Data Structures:

Python language support 4 types of data structures. They are:

 1. Lists

2. Tuples

3. Dictionary

4. Sets

3. 1 Lists

 Lists are Python's most flexible ordered collection object type. Unlike strings, lists can contain

any sort of object: numbers, strings, even other lists. Python lists do the work of most of the

collection data structures you might have to implement manually in lower-level languages such as

C. In terms of some of their main properties, Python lists are:

Ordered collections of arbitrary objects

From a functional view, lists are just a place to collect other objects, so you can treat them as a

group. Lists also define a left-to-right positional ordering of the items in the list.

Accessed by offset

Just as with strings, you can fetch a component object out of a list by indexing the list on the

object's offset. Since lists are ordered, you can also do such tasks as slicing and concatenation.

Variable length, heterogeneous, arbitrarily nestable

Unlike strings, lists can grow and shrink in place (they're variable length), and may contain any

sort of object, not just one-character strings (they're heterogeneous). Because lists can contain

other complex objects, lists also support arbitrary nesting; you can create lists of lists of lists, and

so on.

13A05806 Python Programming

Department of CSE-GPCET

Of the category mutable sequence

In fact, sequence operations work the same on lists as on strings. On the other hand, because lists

are mutable, they also support other operations strings don't, such as deletion, index assignment,

and methods.

Arrays of object references

Technically, Python lists contain zero or more references to other objects. If you've used a

language such as C, lists might remind you of arrays of pointers. Fetching an item from a Python

lists is about as fast as indexing a C array; in fact, lists really are C arrays inside the Python

interpreter. Moreover, references are something like pointers (addresses) in a language such as C,

except that you never process a reference by itself; Python always follows a reference to an object

whenever the reference is used, so your program only deals with objects. Whenever you stuff an

object into a data structure or variable name, Python always stores a reference to the object, not a

copy of it (unless you request a copy explicitly). Use the square brackets for slicing along with the

index or indices to obtain value available at that index.

 Example

list1 = ['physics', 'chemistry', 1997, 2000];

list2 = [1, 2, 3, 4, 5, 6, 7];

print "list1[0]: ", list1[0]

print "list2[1:5]: ", list2[1:5]

Output

list1[0]: physics

list2[1:5]: [2, 3, 4, 5]

Updating

You can update single or multiple elements of lists

list = ['physics', 'chemistry', 1997, 2000];

print "Value available at index 2 : "

print list[2];

list[2] = 2001;

print "New value available at index 2 : "

print list[2];

Value available at index 2 :

1997

New value available at index 2 :

2001

Deleting List Elements

Use the del statement to delete elements.

Ex:

list1 = ['physics', 'chemistry', 1997, 2000];

print list1;

del list1[2];

13A05806 Python Programming

Department of CSE-GPCET

print "After deleting value at index 2 : "

print list1;

output:

['physics', 'chemistry', 1997, 2000]

After deleting value at index 2 :

['physics', 'chemistry', 2000]

Basic List Operations

Python Expression Results
len([1, 2, 3]) 3

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6]

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!']

3 in [1, 2, 3] True

for x in [1, 2, 3]: print x, 1 2 3

Indexing, Slicing

L = ['spam', 'Spam', 'SPAM!']

Python Expression Results

L[2] 'SPAM!'

L[-2] 'Spam'

L[1:] ['Spam', 'SPAM!']

Built-in List Functions

1. len()

The method len() returns the number of elements in the list.

list1, list2 = [123, 'xyz', 'zara'], [456, 'abc']

print "First list length : ", len(list1);

print "Second list length : ", len(list2);

Output:

First list length : 3

Second lsit length : 2

2. max()

The method max returns the elements from the list with maximum value.

list1, list2 = [123, 'xyz', 'zara', 'abc'], [456, 700, 200]

print "Max value element : ", max(list1);

print "Max value element : ", max(list2);

output:

Max value element : zara

Max value element : 700

3. min()

The method min() returns the elements from the list with minimum value.

list1, list2 = [123, 'xyz', 'zara', 'abc'], [456, 700, 200]

print "min value element : ", min(list1);

13A05806 Python Programming

Department of CSE-GPCET

print "min value element : ", min(list2);

Output:

min value element : 123

min value element : 200

4. append()

The method append() appends a passed obj into the existing list

aList = [123, 'xyz', 'zara', 'abc'];

aList.append(2009);

print "Updated List : ", aList;

Output:

Updated List : [123, 'xyz', 'zara', 'abc', 2009]

5. Count()

The method count() returns count of how many times obj occurs in list.

aList = [123, 'xyz', 'zara', 'abc', 123];

print "Count for 123 : ", aList.count(123);

print "Count for zara : ", aList.count('zara');

Output:

Count for 123 : 2

Count for zara : 1

6. Extend()

The method extend() appends the contents of seq to list.

aList = [123, 'xyz', 'zara', 'abc', 123];

bList = [2009, 'manni'];

aList.extend(bList)

print "Extended List : ", aList ;

Output:

Extended List : [123, 'xyz', 'zara', 'abc', 123, 2009, 'manni']

7. index()

The method index() returns the lowest index in list that obj appears.

aList = [123, 'xyz', 'zara', 'abc'];

print "Index for xyz : ", aList.index('xyz') ;

print "Index for zara : ", aList.index('zara') ;

Output:

Index for xyz : 1

Index for zara : 2

8. insert()

The method insert() inserts object obj into list at offset index.

aList = [123, 'xyz', 'zara', 'abc']

aList.insert(3, 2009)

print "Final List : ", aList

13A05806 Python Programming

Department of CSE-GPCET

Output:

Final List : [123, 'xyz', 'zara', 2009, 'abc']

9. pop()

The method pop() removes and returns last object or obj from the list.

aList = [123, 'xyz', 'zara', 'abc'];

print "A List : ", aList.pop();

print "B List : ", aList.pop(2);

Output:

A List : abc

B List : zara

10. remove()

This method does not return any value but removes the given object from the list.

aList = [123, 'xyz', 'zara', 'abc', 'xyz'];

aList.remove('xyz');

print "List : ", aList;

aList.remove('abc');

print "List : ", aList;

11. reverse()

The method reverse() reverses objects of list in place.

aList = [123, 'xyz', 'zara', 'abc', 'xyz'];

aList.reverse();

print "List : ", aList;

Output:

List : ['xyz', 'abc', 'zara', 'xyz', 123]

3.2 Tuples

The next collection type is the Python tuple. Tuples construct simple groups of objects. They work

exactly like lists, except that tuples can't be changed in place (they're immutable) and are usually

written as a series of items in parentheses, not square brackets. Tuples share most of their

properties with lists. They are:

Ordered collections of arbitrary objects

Like strings and lists, tuples are an ordered collection of objects; like lists, they can embed any

kind of object.

Accessed by offset

Like strings and lists, items in a tuple are accessed by offset (not key); they support all the offset-

base access operations we've already seen, such as indexing and slicing.

Of the category immutable sequence

Like strings, tuples are immutable; they don't support any of the in-place change operations we

saw applied to lists. Like strings and lists, tuples are sequences; they support many of the same

operations.

13A05806 Python Programming

Department of CSE-GPCET

Fixed-length, heterogeneous, and arbitrarily nestable

Because tuples are immutable, you cannot change the size of a tuple without making a copy. On

the other hand, tuples can hold any type of object, including other compound objects (e.g., lists,

dictionaries, other tuples), and so support arbitrary nesting.

Arrays of object references

Like lists, tuples are best thought of as object reference arrays; tuples store access points to other

objects (references), and indexing a tuple is relatively quick. Table highlights common tuple

operations. A tuple is written as a series of objects (technically, expressions that generate objects),

separated by commas and normally enclosed in parentheses. An empty tuple is just a parentheses

pair with nothing inside.

Operation Interpretation

() An empty tuple

T = (0,) A one-item tuple (not an expression)

T = (0, 'Ni', 1.2, 3) A four-item tuple

T = 0, 'Ni', 1.2, 3 Another four-item tuple (same as prior line)

Accessing Values in Tuples

tup1 = ('physics', 'chemistry', 1997, 2000);

tup2 = (1, 2, 3, 4, 5, 6, 7);

print "tup1[0]: ", tup1[0]

print "tup2[1:5]: ", tup2[1:5]

Output:

tup1[0]: physics

tup2[1:5]: [2, 3, 4, 5]

* Updating Tuples is immpossible

* DeletingTuple Elements is not possible

Basic Tuples Operations

 Tuples respond to the + and * operators much like strings

 The result is a new tuple

Python Expression Results

 len((1, 2, 3)) 3

 (1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6)

 ('Hi!',) * 4 ('Hi!', 'Hi!', 'Hi!', 'Hi!')

 3 in (1, 2, 3) True

 for x in (1, 2, 3): print x, 1 2 3

 Indexing, Slicing

L = ('spam', 'Spam', 'SPAM!')

13A05806 Python Programming

Department of CSE-GPCET

Python Expression Results
 L[2] 'SPAM!'

 L[-2] 'Spam'

 L[1:] ['Spam', 'SPAM!']

Built-in Tuple Functions

1. len()

The method len() returns the number of elements in the tuple.

tuple1, tuple2 = (123, 'xyz', 'zara'), (456, 'abc')

print "First tuple length : ", len(tuple1);

print "Second tuple length : ", len(tuple2);

Output:

First tuple length : 3

Second tuple length : 2

2. max()

The method max() returns the elements from the tuple with maximum value.

tuple1, tuple2 = (123, 'xyz', 'zara', 'abc'), (456, 700, 200)

print "Max value element : ", max(tuple1);

print "Max value element : ", max(tuple2);

Output:

Max value element : zara

Max value element : 700

3. min()

The method min() returns the elements from the tuple with minimum value.

tuple1, tuple2 = (123, 'xyz', 'zara', 'abc'), (456, 700, 200)

print "min value element : ", min(tuple1);

print "min value element : ", min(tuple2);

Output:

min value element : 123

min value element : 200

4. tuple()

This method converts and object into tuple.

aList = (123, 'xyz', 'zara', 'abc');

13A05806 Python Programming

Department of CSE-GPCET

aTuple = tuple(aList)

print "Tuple elements : ", aTuple

Output:

Tuple elements : (123, 'xyz', 'zara', 'abc')

>>> a=[2,"abc", 23.7]

>>> at=tuple(a)

>>> at

(2, 'abc', 23.7)

3.3. Dictionary

Besides lists, dictionaries are perhaps the most flexible built-in data type in Python. If you think of

lists as ordered collections of objects, dictionaries are unordered collections; their chief distinction

is that items are stored and fetched in dictionaries by key, instead of offset. As we'll see, built-in

dictionaries can replace many of the searching algorithms and data-structures you might have to

implement manually in lower-level languages. Dictionaries also sometimes do the work of records

and symbol tables used in other languages. In terms of their main properties, dictionaries are:

Accessed by key, not offset

Dictionaries are sometimes called associative arrays or bashes. They associate a set of values with

keys, so that you can fetch an item out of a dictionary using the key that stores it. You use the same

indexing operation to get components in a dictionary, but the index takes the form of a key, not a

relative offset.

Unordered collections of arbitrary objects

Unlike lists, items stored in a dictionary aren't kept in any particular order; in fact, Python

randomizes their order in order to provide quick lookup. Keys provide the symbolic (not physical)

location of items in a dictionary.

Variable length, heterogeneous, arbitrarily nestable

Like lists, dictionaries can grow and shrink in place (without making a copy), they can contain

objects of any type, and support nesting to any depth (they can contain lists, other dictionaries, and

so on).

Of the category mutable mapping

They can be changed in place by assigning to indexes, but don't support the sequence operations

we've seen work on strings and lists. In fact, they can't: because dictionaries are unordered

collections, operations that depend on a fixed order (e.g., concatenation, slicing) don't make sense.

Instead, dictionaries are the only built-in representative of the mapping type category—objects that

map keys to values.

Tables of object references (hash tables)

If lists are arrays of object references, dictionaries are unordered tables of object references.

Internally, dictionaries are implemented as hash tables (data structures that support very fast

retrieval), which start small and grow on demand. Moreover, Python employs optimized hashing

13A05806 Python Programming

Department of CSE-GPCET

algorithms to find keys, so retrieval is very fast. But at the bottom, dictionaries store object

references (not copies), just like lists.

Table summarizes some of the most common dictionary. Dictionaries are written as a series of

key:value pairs, separated by commas, and enclosed in curly braces. An empty dictionary is an

empty set of braces, and dictionaries can be nested by writing one as a value in another dictionary,

or an item in a list

(or tuple).

we often build up dictionaries by assigning to new keys at runtime, rather than writing constants.

But see the following section on changing dictionaries; lists and dictionaries are grown in different

ways. Assignment to new keys works for dictionaries, but fails for lists (lists are grown with

append).

Table . Common Dictionary Constants and Operations

Operation Interpretation

d1 = {} Empty dictionary

d2 = {'spam' : 2, 'eggs' : 3} Two-item dictionary

d3 = {'food' : {'ham' : 1, 'egg' : 2}} Nesting

d2['eggs'], d3['food']['ham'] Indexing by key

Each key is separated from its value by a colon (:), the items are separated by commas, and the

whole thing is enclosed in curly braces.

An empty dictionary without any items is written with just two curly braces, like this: {}.

Ex

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'};

Keys are unique within a dictionary while values may not be.

The values of a dictionary can be of any type, but the keys must be of an immutable data type such

as strings, numbers, or tuples .

Accessing Values in Dictionary

Use the square brackets along with the key to obtain its value.

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'};

print "dict['Name']: ", dict['Name'];

print "dict['Age']: ", dict['Age'];

Output:

dict['Name']: Zara

dict['Age']: 7

If we attempt to access a data item with a key, which is not part of the dictionary, we get an error

as follows:

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'};

print "dict['Alice']: ", dict['Alice'];

Output

dict['Zara']:

13A05806 Python Programming

Department of CSE-GPCET

Traceback (most recent call last):

File "test.py", line 4, in <module>

print "dict['Alice']: ", dict['Alice'];

KeyError: 'Alice‘

Updating Dictionary:

You can update a dictionary by

1. adding a new entry or a key-value pair,

2. modifying an existing entry, or

3. deleting an existing entry

Example:

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'};

dict['Age'] = 8; # update existing entry

dict['School'] = "DPS School"; # Add new entry

print "dict['Age']: ", dict['Age'];

print "dict['School']: ", dict['School'];

Output

dict['Age']: 8

dict['School']: DPS School

Delete Dictionary Elements:

Example:

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'};

del dict['Name']; # remove entry with key 'Name'

dict.clear(); # remove all entries in dict

del dict ; # delete entire dictionary

print "dict['Age']: ", dict['Age'];

print "dict['School']: ", dict['School'];

Output:

dict['Age']:

Traceback (most recent call last):

File "test.py", line 8, in <module>

print "dict['Age']: ", dict['Age'];

13A05806 Python Programming

Department of CSE-GPCET

TypeError: 'type' object is unsubscriptable

More than one entry per key not allowed. Which means no duplicate key is allowed. When

duplicate keys encountered during assignment, the last assignment wins.

Example:

dict = {'Name': 'Zara', 'Age': 7, 'Name': 'Manni'};

print "dict['Name']: ", dict['Name'];

Output

dict['Name']: Manni

 Example:

dict = {['Name']: 'Zara', 'Age': 7};

print "dict['Name']: ", dict['Name'];

When the above code is executed, it produces the following result:

Traceback (most recent call last):

File "test.py", line 3, in <module>

dict = {['Name']: 'Zara', 'Age': 7};

TypeError: list objects are unhashable

Built-in Dictionary Functions

1. len()

The method len() gives the total length of the dictionary. This would be equal to the number of

items in the dictionary.

dict = {'Name': 'Zara', 'Age': 7};

print "Length : %d" % len (dict)

Output

Length : 2

2. str()

The method str() produces a printable string representation of a dictionary.

dict = {'Name': 'Zara', 'Age': 7};

print "Equivalent String : %s" % str (dict)

When we run above program, it produces following result:

Equivalent String : {'Age': 7, 'Name': 'Zara'}

13A05806 Python Programming

Department of CSE-GPCET

3. type()

The method type() returns the type of the passed variable. If passed variable is dictionary then it

would return a dictionary type.

dict = {'Name': 'Zara', 'Age': 7};

print "Variable Type : %s" % type (dict)

Ouput

Variable Type : <type 'dict'>

4.clear()

The method clear() removes all items from the dictionary.

dict = {'Name': 'Zara', 'Age': 7};

print "Start Len : %d" % len(dict)

dict.clear()

print "End Len : %d" % len(dict)

Output

Start Len : 2

End Len : 0

5.copy()

The method copy() returns a shallow copy of the dictionary

dict1 = {'Name': 'Zara', 'Age': 7};

dict2 = dict1.copy()

print "New Dictinary : %s" % str(dict2)

Output

New Dictinary : {'Age': 7, 'Name': 'Zara'}

6. fromkeys()

The method fromkeys() creates a new dictionary with keys from seq and values set to value.

seq = ('name', 'age', 'sex')

dict = dict.fromkeys(seq)

print "New Dictionary : %s" % str(dict)

dict = dict.fromkeys(seq, 10)

print "New Dictionary : %s" % str(dict)

New Dictionary : {'age': None, 'name': None, 'sex': None}

New Dictionary : {'age': 10, 'name': 10, 'sex': 10}

7. get()

The method get() returns a value for the given key. If key is not available then returns default value

None.

13A05806 Python Programming

Department of CSE-GPCET

dict = {'Name': 'Zabra', 'Age': 7}

print "Value : %s" % dict.get('Age')

print "Value : %s" % dict.get('Education‗)

 Output

Value : 7

Value : None

8. has_key()

The method has_key() returns true if a given key is available in the dictionary, otherwise it returns

a false.

dict = {'Name': 'Zara', 'Age': 7}

print "Value : %s" % dict.has_key('Age')

print "Value : %s" % dict.has_key('Sex')

Output

Value : True

Value : False

9. items()

The method items() returns a list of dict's (key, value) tuple pairs

dict = {'Name': 'Zara', 'Age': 7}

print "Value : %s" % dict.items()

Output:

Value : [('Age', 7), ('Name', 'Zara')]

10. keys()

The method keys() returns a list of all the available keys in the dictionary.

dict = {'Name': 'Zara', 'Age': 7}

print "Value : %s" % dict.keys()

Output:

Value : ['Age', 'Name']

11. setdefault()

The method setdefault() is similar to get(), but will set dict[key]=default if key is not already in

dict.

dict = {'Name': 'Zara', 'Age': 7}

print "Value : %s" % dict.setdefault('Age', None)

13A05806 Python Programming

Department of CSE-GPCET

print "Value : %s" % dict.setdefault('Sex', None)

Output

Value : 7

Value : None

12.update()

The method update() adds dictionary dict2's key-values pairs in to dict. This function does not

return anything.

dict = {'Name': 'Zara', 'Age': 7}

dict2 = {'Sex': 'female' }

dict.update(dict2)

print "Value : %s" % dict

Output

Value : {'Age': 7, 'Name': 'Zara', 'Sex': 'female'}

13. values()

The method values() returns a list of all the values available in a given dictionary.

dict = {'Name': 'Zara', 'Age': 7}

print "Value : %s" % dict.values()

Output

Value : [7, 'Zara']

3.4. SETS

Besides decimals, Python 2.4 also introduced a new collection type, the set—an unordered

collection of unique and immutable objects that supports operations corresponding to mathematical

set theory. By definition, an item appears only once in a set, no matter how many times it is added.

Accordingly, sets have a variety of applications, especially in numeric and database-focused work.

Because sets are collections of other objects, they share some behavior with objects such as lists

and dictionaries that are outside the scope of this chapter. For example, sets are iterable, can grow

and shrink on demand, and may contain a variety of object types. As we‘ll see, a set acts much like

the keys of a valueless dictionary, but it supports extra operations.

However, because sets are unordered and do not map keys to values, they are neither sequence nor

mapping types; they are a type category unto themselves. Moreover, because sets are

fundamentally mathematical in nature we‘ll explore the basic utility of Python‘s set objects here.

To make a set object, pass in a sequence or other iterable object to

the built-in set function:

>>> x = set('abcde')

13A05806 Python Programming

Department of CSE-GPCET

>>> y = set('bdxyz')

You get back a set object, which contains all the items in the object passed in

>>> x

set(['a', 'c', 'b', 'e', 'd']) # Pythons <= 2.6 display format

Sets made this way support the common mathematical set operations with expression operators.

Note that we can‘t perform the following operations on plain sequences like strings, lists, and

tuples—we must create sets from them by passing them to set in order to apply these tools.

Immutable constraints and frozen sets

lists and dictionaries cannot be embedded in sets, but tuples can if you need to store compound

values.

Tuples compare by their full values when used in set operations:

Tuples in a set, for instance, might be used to represent dates, records, IP addresses, and so on.

Sets may also contain modules, type objects, and more. Sets themselves are mutable too, and so

cannot be nested in other sets directly; if you need to store a set inside another set, the frozenset

built-in call works just like set but creates an immutable set that cannot change and thus can be

embedded in other sets.

Table : Set Operation Symbol

Python Symbol Description

in Is a member of

not in Is not a member of

= == Is equal to

!= Is not equal to

< Is a (strict) subset of

<= Is a subset of (includes improper

subsets)

> Is a (strict) superset of

>= Is a superset of (includes improper

supersets)

& Intersection

| Union

- or \ Difference or relative complement

 ^ Symmetric difference

Why sets?

Set operations have a variety of common uses, some more practical than mathematical. For

example, because items are stored only once in a set, sets can be used to filter duplicates out of

other collections, though items may be reordered in the process because sets are unordered in

general. Simply convert the collection to a set, and then convert it back again:

>>> L = [1, 2, 1, 3, 2, 4, 5]

>>> set(L)

{1, 2, 3, 4, 5}

13A05806 Python Programming

Department of CSE-GPCET

>>> L = list(set(L)) # Remove duplicates

>>> L

[1, 2, 3, 4, 5]

Membership

>>> A={1,2,3}

>>> B={3,4,5,6}

>>> 1 in A

True

1. add method

Adds new element to the set

>>> A={1,2,3}

>>> A.add(4)

>>> A

{1, 2, 3, 4}

2. remove()

Removes a member from the set

>>> A={2,3,4,5}

>>> A

{2, 3, 4, 5}

>>> A.remove(2)

>>> A

{3, 4, 5}

3. union

Union Set of elements in either set A or set B

Operator is |

>>> A={1,3,4,5}

>>> B={2,4,6,8}

>>> A|B

{1, 2, 3, 4, 5, 6, 8}

4. intersection()

Set of elements in both A and B

>>> A={1,3,4,5}

4>>> B={2,4,6,8}

>>> A&B

{4}

5. difference

 Set of elements in set A, but not in set B

>>> A={1,3,4,5}

>>> B={2,4,6,8}

>>> A-B

{1, 3, 5}

13A05806 Python Programming

Department of CSE-GPCET

6. Symmetric difference

Set of elements in set A or set B, but not both

>>> A={1,3,4,5}

>>> B={2,4,6,8}

>>> A^B

{1, 2, 3, 5, 6, 8}

7. size

Number of elements in the set

>>> A={1,3,4,6,7}

>>> len(A)

5

>>>fruit={'apple','banana','mango'}

>>> fruit

{'mango', 'banana', 'apple'}

>>> 'mango' in fruit

True

>>> fruit.add('pineappple')

>>> fruit

{'mango', 'banana', 'apple', 'pineappple'}

8. Empty set

>>> subject={}

>>> subject

{}

>>> s1=set()

>>> s1

set()

>>> vowelslist=['a','e','i','o','u']

>>> vset=set(vowelslist)

>>> vset

{'a', 'o', 'e', 'i', 'u'}

>>> vowels='aeiou'

>>> vset=set(vowels)

>>> vset

{'a', 'o', 'e', 'i', 'u'}

4. Comprehensions

4.1 List Comprehensions:

In addition to sequence operations and list methods, Python includes a more advanced operation

known as a list comprehension expression.

 [expr for iter_var in iterable if cond_expr]

13A05806 Python Programming

Department of CSE-GPCET

>>> M = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

>>> M

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

>>> M[1] # Get row 2

[4, 5, 6]

>>> M[1][2] # Get row 2, then get item 3 within the row

6

>>> M

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

>>> col2 = [row[1] for row in M]

>>> col2

[2, 5, 8]

>>> M

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

 They are a way to build a new list by running an expression on each item in a sequence, one at

a time, from left to right.

 List comprehensions are coded in square brackets (to tip you off to the fact that they make a

list) and are composed of an expression and a looping construct that share a variable name

(row, here).

 The preceding list comprehension means basically what it says: ―Give me row[1] for each row

in matrix M, in a new list.‖ The result is a new list containing column 2 of the matrix.

 List comprehensions can be more complex in practice:

>>> M

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

>>> [row[1] + 1 for row in M]

[3, 6, 9]

>>> M

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

>>> [row[1] for row in M if row[1] % 2 == 0]

[2, 8]

>>> diag = [M[i][i] for i in [0, 1, 2]]

>>> diag

[1, 5, 9]

>>> doubles = [c * 2 for c in 'spam']

>>> doubles

['ss', 'pp', 'aa', 'mm']

>>> list(range(5))

[0, 1, 2, 3,4]

>>> list(range(-4,7,2))

[-4, -2, 0, 2, 4, 6]

>>> [[x ** 2, x ** 3] for x in range(4)]

[[0, 0], [1, 1], [4, 8], [9, 27]]

13A05806 Python Programming

Department of CSE-GPCET

4.2 Set comprehensions

 The set comprehension expression is similar in form to the list comprehension , but is

coded in curly braces instead of square brackets and run to make a set instead of a list.

 Set comprehensions run a loop and collect the result of an expression on each iteration;

 A loop variable gives access to the current iteration value for use in the collection

expression.

 The result is a new set you create by running the code, with all the normal set behavior.

>>> {x ** 2 for x in [1, 2, 3, 4]}

{16, 1, 4, 9}

>>> {x for x in 'spam'}

{'m', 'a', 's', 'p'}

>>> {c * 4 for c in 'spam'}

{'aaaa', 'ssss', 'mmmm', 'pppp'}

>>> S = {c * 4 for c in 'spam'}

>>> S | {'mmmm', 'xxxx'}

{'aaaa', 'pppp', 'mmmm', 'ssss', 'xxxx'}

>>> S & {'mmmm', 'xxxx'}

{'mmmm'}

4.3 Dictionary Comprehensions:

Dictionaries in 3.X and 2.7 can also be created with dictionary comprehensions. Like the set

comprehensions, dictionary comprehensions are available only in 3.X and 2.7. They run an

implied loop, collecting the key/value results of expressions on each iteration and using them to

fill out a new dictionary. A loop variable allows the comprehension to use loop iteration values

along the way. To illustrate, a standard way to initialize a dictionary dynamically in both 2.X and

3.X is to combine its keys and values with zip, and pass the result to the dict call. The zip built-in

function is the hook that allows us to construct a dictionary from key and value lists this way—if

you cannot predict the set of keys and values in your code, you can always build them up as lists

and zip them together.

>>> D = {x: x*2 for x in range(5)}

>>> D

{0: 0, 1: 2, 2: 4, 3: 6, 4: 8}

>>> D = {c: c * 4 for c in 'SPAM'}

>>> D

{'S': 'SSSS', 'P': 'PPPP', 'A': 'AAAA', 'M': 'MMMM'}

>> D = {c.lower(): c + '!' for c in ['SPAM', 'EGGS', 'HAM']}

>>> D

{'ham': 'HAM!', 'spam': 'SPAM!', 'eggs': 'EGGS!'}

>>> D = dict.fromkeys(['a', 'b', 'c'], 0)

>>> D

{'b': 0, 'c': 0, 'a': 0}

>>> D = {k:0 for k in ['a', 'b', 'c']}

13A05806 Python Programming

Department of CSE-GPCET

>>> D

{'b': 0, 'c': 0, 'a': 0}

>>> D = dict.fromkeys('spam')

>>> D

{'m': None, 's': None, 'a': None, 'p': None}

>>> D = {k: None for k in 'spam'}

>>> D

{'m': None, 's': None, 'a': None, 'p': None}

