MSMF GATE CENTRE

Subject: Control Systems

Test 4: Root Locus Diagram (RLD) & Frequency response Analysis

(Solutions)

1. Ans: (c)

Sol:

RLD starts at a pole (k = 0) and terminates at a zero $(k = \infty)$ of the OLTF G(S)H(S)

2. **Ans: (b)**

Sol:

 $k = \infty$ RLD ends at open loop zeros, they are the closed loop poles for k =

 \therefore j2, -j2, ∞ are the closed loop poles.

5. **Ans:**(a) Sol:

It is clear from the RLD at S = -2 arrival is 0^{0} .

3. **Ans: (d)**

Sol:

Centroid always lies on the real axis

Centroid

entroid always lies on the real axis entroid
$$(\sigma)$$
 = 6. Ans: (c) Sol: \sum real parts of poles of $G(s)H(s) - \sum$ real parts of zero of $G(s)H(s) - \sum$ OLTF = $\frac{-K}{4-S} = \frac{-K}{(S-4)}$

which gives real quantity

4. Ans: (d)

Sol:

Break away point can lie any where in the s-plane

E.g. G(s) H(s) =
$$\frac{K}{(s^2 + 2s + 2)^2}$$
 Break

away points are $-2 \pm j2$

(or) Characteristics Equation

$$1 + \frac{K}{4 - S} = 0$$

$$\begin{array}{ll} 4-S & +K=0 \\ S=K+4 \end{array}$$

As K increases root moves towards right side of s-plane

∴ RLD is

7. **Ans:** (b) **Sol:**

It is clear from the RLD that the system is stable for only certain positive values of K

from '0' the only answer is 0 < k < 10

8. **Ans: (b)**

Sol:

RLD of the system is shown in fig below

It is clear from the RLD $S_1 = j3$ is not on the RLD, but $S_2 = -5$ is on the RLD

Method II

One may use the angle condition to verify the same.

9. **Ans:** (a) (correction in the question) **Sol:**

$$OLTF = \frac{CLTF}{1 - CLTF} = \frac{\frac{k}{s+2+k}}{1 - \frac{k}{s+2+k}} = \frac{k}{s+2}$$

$$K|_{s=-6} = \frac{1}{\left(\frac{1}{s+2}\right)}$$

$$K = |S + 2|_{S=-6}$$
 $K = |-6 + 2| = 4$
 $K = 4$

(Or) Method 2

Characteristic equation is s+2+k=0, s=-2 will give k=4

10. **Ans:** (c)

Sol: It is clear from the given RLD that the option in (a) (b) (d) are not at all valid ∴ the only option is (c) which is correct.

11. Ans: (d)

Sol:

Characteristic equation is 1 + $\frac{K(S+4)}{S(S^2+6S+13)}$ $S^3+6S^2+13S+KS+4K=0$ $S^3+6S^2+(13+K)S+4K=0$

$$\begin{array}{c|cccc}
S^{3} & 1 & & 13+K \\
S^{2} & 6 & & 4K \\
\hline
S^{0} & 4K & & 6
\end{array}$$

$$S^1 \text{ row} = 0,$$
 $\frac{6(13+K)-4K}{6} = 0$

$$(13)(6) + 6K - 4K = 0$$

$$2K = (-13)(6)$$

$$K = -Ve$$

 \therefore For Positive values of 'K' $0 < k < \infty$, the RLD it will not intersect. The RLD is given below

It is clear that it will not intersect the $j\omega$ axis.

12. Ans: (a)

Sol:

$$1 + G(S)H(S) = S(S+2) + K(S+3) = 0$$
$$1 + \frac{K(S+3)}{S(S+2)} = 0$$

$$\therefore G(S)H(S) = \frac{K(S+3)}{S(S+2)}$$

$$\frac{d}{ds} \left[\frac{S+3}{S(S+2)} \right] = 0$$

$$S^2 + 6s + 6 = 0$$

Roots are, $-3 \pm \sqrt{3}$

i.e. -1.27, -4.73, are the break away points.

13. Ans: (b)

Sol:

The RLD is given below

The diameter of the circle is the distance between the break away points

i.e
$$(4.73 - 1.27) = 3.46$$

14. **Ans:** (b) **Sol:**

$$S^{1}$$
 row = 0
 $30(16) - 16K = 0$
 $K = 30$
 $AE = 30S^{2} + 16K = 0$
 $30S^{2} + 16 (30) = 0$
 $S = \pm j4$
 $\therefore RLD$ intersection at $S = \pm j4$

15. **Ans:** (b)

Sol:

$$1 + G(S)H(S) = 0$$

$$S^{3} + 30S^{2} + 16S + 16K = 0$$

$$1 + \frac{16K}{S^{3} + 30S^{2} + 16S} = 0$$

$$G(S)H(S) = \frac{16K}{S(S^{2} + 30S + 16)}$$

$$P = 3$$
, $Z = 0$
 \therefore No of asymptotes = $|P-Z|$
= $|3-0| = 3$

16. **Ans: (d)**

Sol:

Frequency response is the steady state output of at system to the sinusoidal input.

17. **Ans: (c)**

Sol:

Eg: Transportation lag = e^{-ST_D} It introduces the negative phase, hence Phase and Gain margins of the system decreases

 \therefore Stability decreases.

18. **Ans:** (**b**)

Sol:

$$GM = \frac{1}{\left| G(j\omega_{pc})H(j\omega_{pc}) \right|}$$

It is clear from the expression the gain is decreased then GM increases,, hence if the gain is made half, GM increase by '2'.

19. **Ans:(a)**

Sol:

$$f = 0.1591 \text{ Hz}$$

 $\omega = 2 \pi f = 2 \pi (0.1591) = 1 \text{ rad/sec}$

$$\left| \frac{1}{(j\omega)^2 + j\omega + 1} \right| = \frac{1}{\sqrt{(1 - \omega^2)^2 + \omega^2}} \right|_{\omega = 1} = 1$$
(or) $20\log 1 = 0$ dB

20. Ans: (b)

Sol:

If peak overshoot is zero, implies that damping ratio, $\xi \geq 1$

Resonant peak for
$$\xi \ge \frac{1}{\sqrt{2}}$$
 is '1'

21. **Ans:** (b)

Sol:

GM =

Stable range of k is 0 < k < 20

The value of k for m arginal stability

$$GM = \overline{10} = 2$$

(or) GM in
$$dB = 20\log 2 = 6dB$$

22. Ans: (c)

Sol:

Eg. OLTF =
$$\frac{K}{S-2}$$

$$= \frac{K}{j\omega-2} = \frac{K}{\sqrt{\omega^2+4}} = \frac{K}{(180-\tan \theta)}$$

The Polar plot is

23. Ans:(c)

Sol:

Eg let us consider a system with $G(S)H(S) = \frac{K}{K}$

S(S+2)

This system is stable for $0 < K < \infty$

24. **Ans:** (d)

Sol:

System is marginally stable

$$\therefore$$
 GM = 1 (or) 0 dB

&
$$PM = 0^0$$

25. Ans: (a)

Sol:

It is a polar plot of type '0' system ∴ Option "a" is correct

26. **Ans:** (c)

Sol:

G(S)H(S) has a pole at the origin and poles on the $j\omega$ axis

· option 'c' is correct

27. Ans: (d)

Sol:

Corner frequencies are $= \log \omega_1 = 0$

$$\omega_1 = 1$$

$$\therefore T_1 = \frac{1}{1}$$
and
$$\log \omega_2 = 1$$

$$\omega_2 = 10$$

$$\vdots$$

$$T_2 = 10$$

The starting point frequency $\log \omega = -1$ $\omega = 0.1$

Initial slope is 20 dB/dec hence portion of the TF = G(S)H(S) = Ks

At ω_1 = 1 slope changes to '0' dB. i.e. -20 dB/dec is added to initial slope +20 dB/dec, implies there is a presence of real pole Hence portion of the TF G(S)H(S) =

$$\frac{KS}{1 + ST_1}$$

At $\omega_2 = 10$ slope become -20 dB/dec implies another pole is added

∴ TF G(S)H(S) =
$$\frac{20S}{(1+S)(1+S.\frac{1}{10})}$$

$$= \frac{20S}{(1+S)(1+0.1S)}$$

28. **Ans:** (b)

Sol:

CLTF =
$$\frac{G(S)}{1 + G(S)(H(S))}$$
CLTF =
$$\frac{20S}{(1 + S)(1 + 0.1S) + 20S}$$

$$|CLTF|_{\omega=0}=0$$

29. Ans: (d)

Sol

For a > 1, (-1, j0) is enclosed once in the ccw direction

$$N = 1$$
, (from the plot)
& $P = 1$ (Given)

$$N = P - Z$$

$$Z = P - N$$

$$Z = 1 - 1 = 0$$

$$Z = 0 \text{ System is stable}$$

$$a > 1, \text{ hence } a = 1.5$$

30. **Ans:** (c)

Sol:

For
$$a = 10$$

PM is +Ve
 \therefore PM = 45°

