MsmF GATE CENTRE

Subject: Control Systems
 Test 4: Root Locus Diagram (RLD) \& Frequency response Analysis
 (Solutions)

1. Ans: (c)

Sol:

RLD starts at a pole ($\mathrm{k}=0$) and terminates at a zero $(\mathrm{k}=\infty)$ of the OLTF G(S)H(S)
2. Ans: (b)

Sol:

$\mathrm{k}=\infty$ RLD ends at open loop zeros, they are the closed loop poles for $\mathrm{k}=$ ∞.
$\therefore \mathrm{j} 2,-\mathrm{j} 2, \infty$ are the closed loop poles.
3. Ans: (d)

Sol:
Centroid always lies on the real axis
Centroid
(σ)
$\frac{\sum \text { real parts of poles of } \mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})-\sum \text { real parts of zeró ofG }(\mathrm{s}) \mathrm{H}(\mathrm{s})}{\mathrm{P}-\mathrm{Z}} \quad$ OLTF $=\frac{-\mathrm{K}}{4-\mathrm{S}}=\frac{-4)}{(\mathrm{S}-4)}$
5. Ans:(a)

It is clear from the RLD at $\mathrm{S}=-2$ arrival is 0°.
which gives real quantity
4. Ans: (d)

Sol:

Break away point can lie any where in the s-plane
E.g. $G(s) H(s)=\frac{K}{\left(s^{2}+2 s+2\right)^{2}} \quad$ Break away points are $-2 \pm \mathrm{j} 2$
(or) Characteristics Equation
$1+\frac{\mathrm{K}}{4-\mathrm{S}}=0$
$4-S+K=0$
$S=K+4$
As K increases root moves towards right side of s-plane
$\therefore \mathrm{RLD}$ is

7. Ans: (b)

Sol:

It is clear from the RLD that the system is stable for only certain positive values of K
from' 0 ' the only answer is $0<\mathrm{k}<10$
8. Ans: (b)

Sol:

RLD of the system is shown in fig below $\xrightarrow{\text { N}=\infty}$

It is clear from the RLD $S_{1}=j 3$ is not on the RLD, but $S_{2}=-5$ is on the RLD

Method II

One máy use the angle condition to verify the same.
9. Ans: (a) (correction in the question)

Sol:

OLTF $=\frac{\text { CLTF }}{1-\text { CLTF }}=\frac{\frac{k}{s+2+k}}{1-\frac{k}{s+2+k}}=\frac{k}{s+2}$
$\left.K\right|_{s=-6}=\frac{1}{\left(\frac{1}{S+2}\right)}$
$\mathrm{K}=\mid \mathrm{S}+2_{\mathrm{S}=-6}$
$K=|-6+2|=4$
K $=4$
(Or) Method 2
Characteristic equation is $\mathrm{s}+2+\mathrm{k}=0, \mathrm{~s}=-2$ will give $\mathrm{k}=4$

10. Ans: (c)

Sol: It is clear from the given RLD that the option in (a) (b) (d) are not at all valid \therefore the only option is (c) which is correct.

11. Ans: (d)

Sol:
Characteristic equation is $1+$
$\frac{K(S+4)}{S\left(S^{2}+6 S+13\right)}$
$S^{3}+6 S^{2}+13 S+K S+4 K=0$
$S^{3}+6 S^{2}+(13+K) S+4 K=0$

S^{3}	1	$13+K$
S^{2}	6	$4 K$
S^{1}	$\frac{6(13+K)-4 K}{6}$	
S^{0}	$4 K$	

S^{1} row $=0, \quad \frac{6(13+K)-4 K}{6}=0$
(13)(6) $+6 \mathrm{~K}-4 \mathrm{~K}=0$
$2 \mathrm{~K}=(-13)(6)$
$\mathrm{K}=-\mathrm{Ve}$
\therefore For Positive values of ' K ' $0<\mathrm{k}<\infty$, the RLD it will not intersect.
The RLD is given below

It is clear that it will not intersect the $\mathrm{j} \omega$ axis.
12. Ans: (a)

Sol:

$1+\mathrm{G}(\mathrm{S}) \mathrm{H}(\mathrm{S})=\mathrm{S}(\mathrm{S}+2)+\mathrm{K}(\mathrm{S}+3)=0$
$1+\frac{\mathrm{K}(\mathrm{S}+3)}{\mathrm{S}(\mathrm{S}+2)}=0$
$\therefore \mathrm{G}(\mathrm{S}) \mathrm{H}(\mathrm{S})=\frac{\mathrm{K}(\mathrm{S}+3)}{\mathrm{S}(\mathrm{S}+2)}$
$\frac{\mathrm{d}}{\mathrm{ds}}\left[\frac{\mathrm{S}+3}{\mathrm{~S}(\mathrm{~S}+2)}\right]=0$
$S^{2}+6 s+6=0$
Roots are, $-3 \pm \sqrt{3}$
i.e. $-1.27,-4.73$, are the break away points.

The diameter of the circle is the distance between the break away points

$$
\text { i.e }(4.73-1.27)=3.46
$$

14. Ans: (b)

Sol:

S^{3}	1	16
S^{2}	30	$16 K$
S^{1}	$\frac{30(16)-16 K}{30}$	
S^{0}	$16 K$	

$$
\begin{aligned}
& S^{1} \text { row }=0 \\
& 30(16)-16 \mathrm{~K}=0 \\
& \mathrm{~K}=30 \\
& \mathrm{AE}=30 \mathrm{~S}^{2}+16 \mathrm{~K}=0 \\
& 30 \mathrm{~S}^{2}+16(30)=0 \\
& \mathrm{~S}= \pm \mathrm{j} 4
\end{aligned}
$$

\therefore RLD intersection at $\mathrm{S}= \pm \mathrm{j} 4$

15. Ans: (b)

Sol:

$$
\begin{aligned}
& 1+\mathrm{G}(\mathrm{~S}) \mathrm{H}(\mathrm{~S})=0 \\
& \mathrm{~S}^{3}+30 \mathrm{~S}^{2}+16 \mathrm{~S}+16 \mathrm{~K}=0 \\
& 1+\frac{16 K}{S^{3}+30 S^{2}+16 S}=0 \\
& \mathrm{G}(\mathrm{~S}) \mathrm{H}(\mathrm{~S})=\frac{16 \mathrm{~K}}{\mathrm{~S}\left(\mathrm{~S}^{2}+30 \mathrm{~S}+16\right)}
\end{aligned}
$$

$$
P=3, Z=0
$$

\therefore No of asymptotes $=|P-Z|$

$$
=|3-0|=3
$$

16. Ans: (d)

Sol:
Frequency response is the steady state output of at system to the sinusoidal input.

17. Ans: (c)

Sol:

Eg: Transportation lag $=\mathrm{e}^{-\mathrm{ST}_{\mathrm{D}}}$
It introduces the negative phase, hence Phase and Gain margins of the system decreases
\therefore Stability decreases.

18. Ans: (b)

Sol:
$\mathrm{GM}=\frac{1}{\left|G\left(j \omega_{p c}\right) H\left(j \omega_{p c}\right)\right|}$
It is clear from the expression the gain is decreased then GM increases,, hence if the gain is made half, GM increase by ' 2 '.

19. Ans:(a)

Sol:

$\mathrm{f}=0.1591 \mathrm{~Hz}$
$\omega=2 \pi_{\mathrm{f}}=2 \pi(0.1591)=1 \mathrm{rad} / \mathrm{sec}$
$\left|\frac{1}{(j \omega)^{2}+j \omega+1}\right|=\left.\frac{1}{\sqrt{\left(1-\omega^{2}\right)^{2}+\omega^{2}}}\right|_{\omega=1}=1$
(or) $20 \log 1=0 \mathrm{~dB}$

20. Ans: (b)

Sol:

If peak overshoot is zero, implies that damping ratio, $\quad \xi \geq 1$

$$
\text { Resonant peak for } \xi^{\geq \frac{1}{\sqrt{2}}} \text { is ' } 1 \text { ' }
$$

21. Ans: (b)

Sol:

Stable range of k is $0<\mathrm{k}<20$
The value of k for marginal stability
$G M=\quad$ Required value of K
$\mathrm{GM}=\frac{\frac{20}{10}}{10}=2$
(or) GM in $\mathrm{dB}=20 \log 2=6 \mathrm{~dB}$
22. Ans: (c)

Sol:

Eg. $\mathrm{OLTF}=\frac{\mathrm{K}}{\mathrm{S}-2}$

$\frac{\omega}{2}$

The Polar plot is

23. Ans:(c)

Sol:

Eg let us consider a system with $G(S) H(S)=$

$$
\frac{\mathrm{K}}{\mathrm{~S}(\mathrm{~S}+2)}
$$

This system is stable for $0<\mathrm{K}<\infty$

24. Ans: (d)

Sol:

System is marginally stable
$\therefore \mathrm{GM}=1$ (or) 0 dB
$\& P M=0^{0}$

$$
K=20
$$

25. Ans: (a)

Sol:
It is a polar plot of type ' 0 ' system
\therefore Option "a" is correct

26. Ans: (c)

Sol:

$\mathrm{G}(\mathrm{S}) \mathrm{H}(\mathrm{S})$ has a pole at the origin and poles on the $\mathrm{j} \omega$ axis
\therefore option ' \mathbf{c} ' is correct

27. Ans: (d)

Sol:

Corner frequencies are $=\log \omega_{1}=0$

$$
\omega_{1}=1
$$

$$
\therefore \mathrm{T}_{1}=\frac{1}{1}
$$

$$
\log \omega_{2}=1
$$

$$
\omega_{2}=10
$$

$$
\therefore \mathrm{T}_{2}=\frac{1}{10}
$$

The starting point frequency $\log \omega=-1$

$$
\omega=0.1
$$

Initial slope is $20 \mathrm{~dB} /$ dec hence portion of the $\mathrm{TF}=\mathrm{G}(\mathrm{S}) \mathrm{H}(\mathrm{S})=\mathrm{Ks}$
At $\omega_{1}=1$ slope changes to ' 0 ' dB. i.e. -20 $\mathrm{dB} / \mathrm{dec}$ is added to initial slope $+20 \mathrm{~dB} / \mathrm{dec}$, implies there is a presence of real pole Hence portion of the $\mathrm{TF} \mathrm{G}(\mathrm{S}) \mathrm{H}(\mathrm{S})=$

$$
\frac{\mathrm{KS}}{1+\mathrm{ST}_{1}}
$$

At $\omega_{2}=10$ slope become $-20 \mathrm{~dB} / \mathrm{dec}$ implies another pole is added

$$
\therefore \text { Total TF G(S)H(S) }=
$$

$$
\begin{aligned}
& \frac{K s}{\left(1+s T_{1}\right)\left(1+s T_{2}\right)} \\
& |\mathrm{K}|+|\mathrm{S}|=6 \mathrm{~dB} / \omega=0.1 \\
& (20 \operatorname{logK}+20 \log \omega)_{\omega=0.1}=6 \mathrm{~dB}
\end{aligned}
$$

\therefore TF G(S)H(S) $=\frac{20 S}{(1+S)\left(1+S \cdot \frac{1}{10}\right)}$

$$
=\frac{20 S}{(1+S)(1+0.1 S)}
$$

28. Ans: (b)

Sol:

$$
\mathrm{CLTF}=\frac{G(S)}{1+G(S)(H(S)}
$$

$$
\text { CLTF }=\frac{20 S}{(1+S)(1+0.1 S)+20 S}
$$

$$
|\operatorname{CLTF}|_{\omega=0}=0
$$

29. Ans: (d)

Sol:

For a $>1,(-1, j 0)$ is enclosed once in the ccw direction
$\therefore \mathrm{N}=1$, (from the plot)

$$
\& \mathrm{P}=1 \text { (Given) }
$$

$$
\begin{aligned}
& \mathrm{N}=\mathrm{P}-\mathrm{Z} \\
& \mathrm{Z}=\mathrm{P}-\mathrm{N} \\
& \mathrm{Z}=1-1=0 \\
& \mathrm{Z}=0 \text { System is stable } \\
& \mathrm{a}>1 \text {, hence } \mathrm{a}=1.5
\end{aligned}
$$

30. Ans: (c)

Sol:

For $\mathrm{a}=10$
$P M$ is $+V e$
$\therefore \mathrm{PM}=45^{\circ}$

