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Recursive (Inductive) Definitions

Definition (Recursive Definitions.)

1. Defining an object using recursion.

2. Defining an object in terms of itself.

– Expressions over + and ∗:
– Base case: Any number of a variable is an expression.
– Induction: If E and F are expressions then so are E + F , E ∗ F , and (E).

– Set of Natural numbers N:

– Base case: 0 ∈ N.
– Induction: If k ∈ N then k + 1 ∈ N.

– Definitions of the factorial function and Fibonacci sequence

– Definition of a singly-linked list in Java:

class List <E> {
E value; \* Base case *\
List<E> next; \* Induction *\ }

– Definition of a tree

Ashutosh Trivedi Lecture 4: Regular Expressions and Finite Automata



Ashutosh Trivedi – 2 of 23

Recursive (Inductive) Definitions

Definition (Recursive Definitions.)

1. Defining an object using recursion.

2. Defining an object in terms of itself.

– Expressions over + and ∗:
– Base case: Any number of a variable is an expression.
– Induction: If E and F are expressions then so are E + F , E ∗ F , and (E).

– Set of Natural numbers N:

– Base case: 0 ∈ N.
– Induction: If k ∈ N then k + 1 ∈ N.

– Definitions of the factorial function and Fibonacci sequence

– Definition of a singly-linked list in Java:

class List <E> {
E value; \* Base case *\
List<E> next; \* Induction *\ }

– Definition of a tree

Ashutosh Trivedi Lecture 4: Regular Expressions and Finite Automata



Ashutosh Trivedi – 2 of 23

Recursive (Inductive) Definitions

Definition (Recursive Definitions.)

1. Defining an object using recursion.

2. Defining an object in terms of itself.

– Expressions over + and ∗:
– Base case: Any number of a variable is an expression.
– Induction: If E and F are expressions then so are E + F , E ∗ F , and (E).

– Set of Natural numbers N:

– Base case: 0 ∈ N.
– Induction: If k ∈ N then k + 1 ∈ N.

– Definitions of the factorial function and Fibonacci sequence

– Definition of a singly-linked list in Java:

class List <E> {
E value; \* Base case *\
List<E> next; \* Induction *\ }

– Definition of a tree

Ashutosh Trivedi Lecture 4: Regular Expressions and Finite Automata



Ashutosh Trivedi – 2 of 23

Recursive (Inductive) Definitions

Definition (Recursive Definitions.)

1. Defining an object using recursion.

2. Defining an object in terms of itself.

– Expressions over + and ∗:
– Base case: Any number of a variable is an expression.
– Induction: If E and F are expressions then so are E + F , E ∗ F , and (E).

– Set of Natural numbers N:

– Base case: 0 ∈ N.
– Induction: If k ∈ N then k + 1 ∈ N.

– Definitions of the factorial function and Fibonacci sequence

– Definition of a singly-linked list in Java:

class List <E> {
E value; \* Base case *\
List<E> next; \* Induction *\ }

– Definition of a tree

Ashutosh Trivedi Lecture 4: Regular Expressions and Finite Automata



Ashutosh Trivedi – 3 of 23

Structural Induction

Definition (Principle of Structural Induction)

Prove an assertion about a set S recursively defined using a set X given in the
basis, and a set of rules using s1, s2, . . . , sk ∈ S for producing new members of
the set.

– (Base case): Prove the assertion for every element in X .

– (Induction): Assume that the assertion holds for arbitrarily chosen
s1, s2, . . . , sk and using this fact prove that all elements of S produced
using the recursive definition and s1, s2, . . . , sk satisfy the assertion.

Examples:

– For all n ≥ 0 we have that
∑n

i=0 i = n(n + 1)/2.

– Every expression defined has an equal number of left and right
parenthesis.

– Every tree has one more node than the edges.

– Other examples

Ashutosh Trivedi Lecture 4: Regular Expressions and Finite Automata



Ashutosh Trivedi – 4 of 23

What are Regular Languages?

– An alphabet Σ = {a, b, c} is a finite set of letters,

– The set of all strings (aka, words) Σ∗ over an alphabet Σ can be
recursively defined as: as :

– Base case: ε ∈ Σ∗ (empty string),
– Induction: If w ∈ Σ∗ then wa ∈ Σ∗ for all a ∈ Σ.

– A language L over some alphabet Σ is a set of strings, i.e. L ⊆ Σ∗.

– Some examples:

– Leven = {w ∈ Σ∗ : w is of even length}
– La∗b∗ = {w ∈ Σ∗ : w is of the form anbm for n,m ≥ 0}
– Lanbn = {w ∈ Σ∗ : w is of the form anbn for n ≥ 0}
– Lprime = {w ∈ Σ∗ : w has a prime number of a′s}

– Deterministic finite state automata define languages that require finite
resources (states) to recognize.

Definition (Regular Languages)

We call a language regular if it can be accepted by a deterministic finite state
automaton.
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Why they are “Regular”

– A number of widely different and equi-expressive formalisms precisely
capture the same class of languages:

– Deterministic finite state automata
– Nondeterministic finite state automata (also with ε-transitions)
– Kleene’s regular expressions, also appeared as Type-3 languages in

Chomsky’s hierarchy [Cho59].
– Monadic second-order logic definable languages [B6̈0, Elg61, Tra62]
– Certain Algebraic connection (acceptability via finite semi-group) [RS59]

We have already seen that:

Theorem (DFA=NFA=ε-NFA)

A language is accepted by a deterministic finite automaton if and only if it is
accepted by a non-deterministic finite automaton.

In this lecture we introduce Regular Expressions, and prove:

Theorem (REGEX=DFA)

A language is accepted by a deterministic finite automaton if and only if it is
accepted by a regular expression.
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Regular Expressions (RegEx)

– textual (declarative) way to represent regular languages (compare
automata)

– Users of UNIX-based systems will already be familiar with these
expressions:

– ls lecture*.pdf
– rm -rf *.*
– grep automat* /usr/share/dict/words
– Also used in AWK, expr, Emacs and vi searches,
– Lexical analysis tools like flex use it for defining tokens

– Some useful String-set operations:

– union L ∪M
def
= {w : w ∈ L or w ∈ M}

– concatenation L.M
def
= {u.v : u ∈ L and v ∈ M}

– self-concatenation let L2 def
= L.L, similarly L3, L4, .... Also L0 def

= {ε}.
– S. C. Kleene cite proposed notation L∗ to denote closure of

self-concatenation operation, i.e. L∗
def
= ∪i≥0L

i .
– Examples L = {ε} and L = {0, 1}
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Regular Expressions: Inductive Definition

For a regular expression E we write L(E ) for its language. The set of valid
regular expressions RegEx can be defined recursively as the following:

Syntax Semantics

(empty string) ε ∈ RegEx L(ε) = {ε}
(empty set) ∅ ∈ RegEx L(∅) = ∅

(single letter) a ∈ RegEx L(a) = {a}
(variable) L ∈ RegEx where L is a language variable.

(union) E + F ∈ RegEx L(E + F ) = L(E ) ∪ L(F )

(concatenation) E .F ∈ RegEx L(E .F ) = L(E ).L(F )

(Kleene Closure) E∗ ∈ RegEx L(E∗) = (L(E ))∗

(Parenthetic Expression) (E ) ∈ RegEx L((E )) = L(E ).

Precedence Rules: ∗ > . > +
Example : 01∗ + 1∗0∗

def
= (0.(1∗)) + ((1∗).(0∗))
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Regular Expressions: Examples

Find regular expressions for the following languages:

– The set of all strings with an even number of 0’s

– The set of all strings of even length (length multiple of k)

– The set of all strings that begin with 110

– The set of all strings containing exactly three 1’s

– The set of all strings divisible by 2

– The set of strings where third last symbol is 1

– Practice writing regular expressions for the languages accepted by finite
state automata.

– Can we generalize this intuitive construction?

– Can we construct a DFA/NFA for a regular expression?
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Finite Automata to Regular Expressions

Theorem
For every deterministic finite automaton A there exists a regular expression EA

such that L(A) = L(EA).

Proof.

– Let states of automaton A be {1, 2, . . . , n}.
– Consider R

(k)
i,j be the regular expression whose language is the set of labels

of path from i to j without visiting any state with label larger than k.

– (Basis): R
(0)
i,j collects labels of direct paths from i to j ,

– R
(0)
i,j = a1 + a2 + · · ·+ an if δ(i , ak) = j for 1 ≤ k ≤ n

– if i = j then it also includes ε.

– (Induction): Compute R
(k)
i,j using R

(k−1)
i,j ’s.
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Computing R
(k)
i ,j using R

(k−1)
i ,j
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i,j using R
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R
(k)
i,j = R

(k−1)
i,j + R

(k−1)
i,k .(R

(k−1)
k,k )∗.R

(k−1)
k,j .

– EA is R
(n)
i0,f1

+ R
(n)
i0,f2

+ · · ·+ R
(n)
i0,fk

.
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Alternative Method–Eliminating States

Shortcomings of previous reduction:

– The previous method works in all the settings, but is expensive (up to n3

expressions, with a factor of 4 blowup in each step).

– For each i , j , i ′, j ′, both R
(k+1)
i,j and R

(k+1)
i ′,j′ store expression (R

(k)
k,k)∗. This

duplication can be avoided.

Alternative (more intuitive) method:

– A “beast” in the middle: Finite automata with regular expressions

– Remove all states except final and initial states in an “intuitive” way.

– Trivial to write regular expressions for DFA with only two states: an initial
and a final one.

– The regular expression is union of this construction for every final state.

– Example
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figure2
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figure3
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Regular Expressions to Finite Automata

Theorem
For every regular expression E there exists a deterministic finite automaton AE

such that L(E ) = L(AE ).

Proof.
– Via induction on the structure of the regular expressions we show a

reduction to nondeterministic finite automata with ε-transitions.

– Result follows form the equivalence of such automata with DFA.
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Regular Expressions to Finite Automata
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Regular Expressions to Finite Automata

Ashutosh Trivedi Lecture 4: Regular Expressions and Finite Automata



Ashutosh Trivedi – 18 of 23

Syntactic Sugar for Regular Expressions in Unix

[a1a2a3 . . . ak ] for a1 + a2 + · · ·+ ak

. for a + b + · · ·+ z + A + ...

| for +

R{5} for RRRRR

R+ for ∪i≥1R{i}
R? for ε + R

Also [A-za-z0-9] ,[:digits:], etc.

Applications:
Check the man page of “grep” (regular expression based search tool) and
“lex” (A tool to generate regular expressions based pattern matching tool) to
learn more about regular expressions on UNIX based systems.
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Algebraic Laws for Regular Expressions

Associativity:

– L + (M + N) = (L + M) + N and L.(M.N) = (L.M).N.

Commutativity:

– L + M = M + L. However, L.M 6= M.L in general.

Identity:

– ∅+ L = L + ∅ = L and ε.L = L.ε = L

Annihilator:

– ∅.L = L.∅ = ∅
Distributivity:

– left distributivity L.(M + N) = L.M + L.N.

– right distributivity (M + N).L = M.L + N.L.

Idempotent L + L = L.
Closure Laws:

– (L∗)∗ = L∗, ∅∗ = ε, ε∗ = ε, L+ = LL∗ = L∗L, and L∗ = L+ + ε.

DeMorgan Type Law: (L + M)∗ = (L∗M∗)∗
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Verifying laws for regular expressions

Theorem
– Let E is some regular expressions with variables L1L2, . . . , Lm.

– Let C be a regular expression where each Li is concretized to some letters
a1a2, . . . am.

– Then every string w in L(E ) can be written as w1w2 . . . wk where wi is in
some language Lji and aj1aj2 . . . ajk is in L(C ).

– In other words , the set L(E ) can be constructed by taking strings
aj1aj2 . . . ajk from L(C ) and replacing aji with Lji .

Proof.
A simple induction over the structure of regular expression E .
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Example

Theorem (Application)

Proof of a concretized law carries over to abstract law.

Example

Prove that (ε + L)∗ = L∗.
We can concretize the rule as (ε + a)∗ = a∗. Let’s prove the concretized law,
and we know that the result will carry over to the abstract law.

(ε + a)∗ = (ε∗.a∗)∗

= (ε.a∗)∗

= (a∗)∗

= a∗.

First equality holds since (L + M)∗ = (L∗.M∗)∗. The second equality holds
since ε∗ = ε. The third equality holds as ε is identity for concatenation, while
the last equality follows from (L∗)∗ = L∗.
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Example

q1start q2 q3

1

0

0
1

0

1

R1,1 R1,2 R1,3 R2,1 R2,2 R2,3 R3,1 R3,2 R3,3

(0) 1 + ε 0 ∅ ∅ 0 + ε 1 ∅ 1 0 + ε
(1) 1∗ 1∗0 ∅ ∅ 0 + ε 1 ∅ 1 0 + ε
(2) 1∗ 1∗00∗ 1∗00∗1 ∅ 0∗ 0∗1 ∅ 10∗ (0 + ε) + 10∗1

R
(1)
1,1 = R

(0)
1,1 + R

(0)
1,1(R

(0)
1,1)∗R

(0)
1,1

= (1 + ε) + (1 + ε)(1 + ε)∗(1 + ε)

= (1 + ε)ε + (1 + ε)(1 + ε)∗(1 + ε)

= (1 + ε)ε + (1 + ε)1∗(1 + ε)

= (1 + ε)(ε + 1∗(1 + ε)) = (1 + ε)(ε + 1∗1 + 1∗ε)

= (1 + ε)(ε + 1+ + 1∗) = (1 + ε)(1∗ + 1∗) = (1 + ε)1∗

= 11∗ + 1∗ = 1+ + 1∗ = 1+ + 1+ + ε = 1+ + ε = 1∗.
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R
(3)
1,3 = R

(2)
1,3 + R

(2)
1,3(R

(2)
3,3)∗R

(2)
3,3

= 1∗00∗1 + 1∗00∗1(0 + ε + 10∗1)∗(0 + ε + 10∗1)

= 1∗00∗1ε + 1∗00∗1(0 + ε + 10∗1)∗(0 + ε + 10∗1)

= 1∗00∗1(ε + (0 + ε + 10∗1)∗(0 + ε + 10∗1))

= 1∗00∗1(ε + (0 + 10∗1)∗(0 + ε + 10∗1))

= 1∗00∗1(ε + (0 + 10∗1)+ + (0 + 10∗1)∗)

= 1∗00∗1((0 + 10∗1)∗ + (0 + 10∗1)∗) = 1∗00∗1(0 + 10∗1)∗
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