
G.PULLAIAH COLLEGE OF ENGINEERING AND TECHNOLOGY

Kurnool – 518002

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Lecture notes of

OBJECT ORIENTED PROGRAMMING USING THROUGH JAVA

Prepared by: P. Rama Rao, Asst. Prof.

Dept of CSE

Unit -3

Inheritance Basics
To inherit a class, you simply incorporate the definition of one class into another by using the
extends keyword. To see how, let’s begin with a short example. The following program creates a
superclass called A and a subclass called B. Notice how the keyword extends is used to create a
subclass of A.
// A simple example of inheritance.
// Create a superclass.
class A {
int i, j;
void showij() {
System.out.println("i and j: " + i + " " + j);
}
}
// Create a subclass by extending class A.
class B extends A {
int k;
void showk() {
System.out.println("k: " + k);
}
void sum() {
System.out.println("i+j+k: " + (i+j+k));
}
}

class SimpleInheritance {
public static void main(String args[]) {
A superOb = new A();
B subOb = new B();
// The superclass may be used by itself.
superOb.i = 10;
superOb.j = 20;
System.out.println("Contents of superOb: ");
superOb.showij();
System.out.println();
/* The subclass has access to all public members of
its superclass. */
subOb.i = 7;
subOb.j = 8;
subOb.k = 9;
System.out.println("Contents of subOb: ");
subOb.showij();
subOb.showk();
System.out.println();
System.out.println("Sum of i, j and k in subOb:");
subOb.sum();

}
}
The output from this program is shown here:
Contents of superOb:
i and j: 10 20
Contents of subOb:
i and j: 7 8
k: 9
Sum of i, j and k in subOb:
i+j+k: 24
As you can see, the subclass B includes all of the members of its superclass, A. This is why
subOb can access i and j and call showij(). Also, inside sum(), i and j can be referred to
directly, as if they were part of B. Even though A is a superclass for B, it is also a completely
independent, stand-alone class. Being a superclass for a subclass does not mean that the
superclass cannot be used by itself. Further, a subclass can be a superclass for another subclass.
The general form of a class declaration that inherits a superclass is shown here:

class subclass-name extends superclass-name {

// body of class
}

You can only specify one superclass for any subclass that you create. Java does not support the
inheritance of multiple superclasses into a single subclass. You can, as stated, create a hierarchy
of inheritance in which a subclass becomes a superclass of another subclass. However, no class
can be a superclass of itself.
Member Access and Inheritance
Although a subclass includes all of the members of its superclass, it cannot access those
members of the superclass that have been declared as private. For example, consider the
following simple class hierarchy:
/* In a class hierarchy, private members remain
private to their class.
This program contains an error and will not
compile.
*/
// Create a superclass.
class A {
int i; // public by default
private int j; // private to A
void setij(int x, int y) {
i = x;
j = y;
}
}
// A's j is not accessible here.
class B extends A {
int total;

void sum() {
total = i + j; // ERROR, j is not accessible here
}
}
class Access {
public static void main(String args[]) {
B subOb = new B();
subOb.setij(10, 12);
subOb.sum();
System.out.println("Total is " + subOb.total);
}
}
This program will not compile because the reference to j inside the sum() method of B causes
an access violation. Since j is declared as private, it is only accessible by other members of its
own class. Subclasses have no access to it.

A Superclass Variable Can Reference a Subclass Object
Areference variable of a superclass can be assigned a reference to any subclass derived from that
superclass. You will find this aspect of inheritance quite useful in a variety of situations. For
example, consider the following:
class RefDemo {
public static void main(String args[]) {
BoxWeight weightbox = new BoxWeight(3, 5, 7, 8.37);
Box plainbox = new Box();
double vol;
vol = weightbox.volume();
System.out.println("Volume of weightbox is " + vol);
System.out.println("Weight of weightbox is " +
weightbox.weight);
System.out.println();
// assign BoxWeight reference to Box reference
plainbox = weightbox;
vol = plainbox.volume(); // OK, volume() defined in Box
System.out.println("Volume of plainbox is " + vol);
/* The following statement is invalid because plainbox
does not define a weight member. */
// System.out.println("Weight of plainbox is " + plainbox.weight);
}
}

Using super
In the preceding examples, classes derived from Box were not implemented as efficiently or as
robustly as they could have been. For example, the constructor for BoxWeight explicitly
initializes the width, height, and depth fields of Box(). Not only does this duplicate code found
in its superclass, which is inefficient, but it implies that a subclass must be granted access to
these members. However, there will be times when you will want to create a superclass that

keeps the details of its implementation to itself (that is, that keeps its data members private). In
this case, there would be no way for a subclass to directly access or initialize these variables on
its own. Since encapsulation is a primary attribute of OOP, it is not surprising that Java provides
a solution to this problem. Whenever a subclass needs to refer to its immediate superclass, it can
do so by use of the keyword super. super has two general forms. The first calls the superclass’
constructor. The second is used to access a member of the superclass that has been hidden by a
member of a subclass.
Each use is examined here.
Using super to Call Superclass Constructors
Asubclass can call a constructor defined by its superclass by use of the following form of super:
super(arg-list);
Here, arg-list specifies any arguments needed by the constructor in the superclass. super() must
always be the first statement executed inside a subclass’ constructor. To see how super() is
used, consider this improved version of the BoxWeight() class:

// BoxWeight now uses super to initialize its Box attributes.
class BoxWeight extends Box {
double weight; // weight of box
// initialize width, height, and depth using super()
BoxWeight(double w, double h, double d, double m) {
super(w, h, d); // call superclass constructor
weight = m;
}
}
Here, BoxWeight() calls super() with the arguments w, h, and d. This causes the Box()
constructor to be called, which initializes width, height, and depth using these values.
BoxWeight no longer initializes these values itself. It only needs to initialize the value unique to
it: weight. This leaves Box free to make these values private if desired. In the preceding
example, super() was called with three arguments. Since constructors can be overloaded, super(
) can be called using any form defined by the superclass. The constructor executed will be the
one that matches the arguments. For example, here is a complete implementation of BoxWeight
that provides constructors for the various ways that a box can be constructed. In each case,
super() is called using the appropriate arguments. Notice that width, height, and depth have
been made private within Box.

Creating a Multilevel Hierarchy
Up to this point, we have been using simple class hierarchies that consist of only a superclass and
a subclass. However, you can build hierarchies that contain as many layers of inheritance as you
like. As mentioned, it is perfectly acceptable to use a subclass as a superclass of another. For
example, given three classes called A, B, and C, C can be a subclass of B, which is a subclass of
A. When this type of situation occurs, each subclass inherits all of the traits found in all of its
superclasses. In this case, C inherits all aspects of B and A. To see how a multilevel hierarchy
can be useful, consider the following program. In it, the subclass BoxWeight is used as a
superclass to create the subclass called Shipment. Shipment inherits all of the traits of
BoxWeight and Box, and adds a field called cost, which holds the cost of shipping such a parcel.

// Extend BoxWeight to include shipping costs.
// Start with Box.
class Box {
private double width;
private double height;
private double depth;

// construct clone of an object
Box(Box ob) { // pass object to constructor
width = ob.width;
height = ob.height;
depth = ob.depth;
}
// constructor used when all dimensions specified
Box(double w, double h, double d) {
width = w;
height = h;
depth = d;
}
// constructor used when no dimensions specified
Box() {
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box
}
// constructor used when cube is created
Box(double len) {
width = height = depth = len;
}
// compute and return volume
double volume() {
return width * height * depth;
}
}
// Add weight.
class BoxWeight extends Box {
double weight; // weight of box
// construct clone of an object
BoxWeight(BoxWeight ob) { // pass object to constructor
super(ob);
weight = ob.weight;
}
// constructor when all parameters are specified
BoxWeight(double w, double h, double d, double m) {
super(w, h, d); // call superclass constructor
weight = m;
}

// default constructor
BoxWeight() {
super();
weight = -1;
}

// constructor used when cube is created
BoxWeight(double len, double m) {
super(len);
weight = m;
}
}
// Add shipping costs.
class Shipment extends BoxWeight {
double cost;
// construct clone of an object
Shipment(Shipment ob) { // pass object to constructor
super(ob);
cost = ob.cost;
}
// constructor when all parameters are specified
Shipment(double w, double h, double d,
double m, double c) {
super(w, h, d, m); // call superclass constructor
cost = c;
}
// default constructor
Shipment() {
super();
cost = -1;
}
// constructor used when cube is created
Shipment(double len, double m, double c) {
super(len, m);
cost = c;
}
}
class DemoShipment {
public static void main(String args[]) {
Shipment shipment1 =
new Shipment(10, 20, 15, 10, 3.41);
Shipment shipment2 =
new Shipment(2, 3, 4, 0.76, 1.28);
double vol;
vol = shipment1.volume();
System.out.println("Volume of shipment1 is " + vol);
System.out.println("Weight of shipment1 is "

+ shipment1.weight);
System.out.println("Shipping cost: $" + shipment1.cost);

vol = shipment2.volume();
System.out.println("Volume of shipment2 is " + vol);
System.out.println("Weight of shipment2 is "
+ shipment2.weight);
System.out.println("Shipping cost: $" + shipment2.cost);
}
}
The output of this program is shown here:
Volume of shipment1 is 3000.0
Weight of shipment1 is 10.0
Shipping cost: $3.41
Volume of shipment2 is 24.0
Weight of shipment2 is 0.76
Shipping cost: $1.28
Because of inheritance, Shipment can make use of the previously defined classes of Box and
BoxWeight, adding only the extra information it needs for its own, specific application. This is
part of the value of inheritance; it allows the reuse of code. This example illustrates one other
important point: super() always refers to the constructor in the closest superclass. The super()
in Shipment calls the constructor in BoxWeight. The super() in BoxWeight calls the
constructor in Box. In a class hierarchy, if a superclass constructor requires parameters, then all
subclasses must pass those parameters “up the line.” This is true whether or not a subclass needs
parameters of its own.

When Constructors Are Called
When a class hierarchy is created, in what order are the constructors for the classes that make up
the hierarchy called? For example, given a subclass called B and a superclass called A, is A’s
constructor called before B’s, or vice versa? The answer is that in a class hierarchy, constructors
are called in order of derivation, from superclass to subclass. Further, since super() must be the
first statement executed in a subclass’ constructor, this order is the same whether or not super()
is used. If super() is not used, then the default or parameterless constructor of each superclass
will be executed. The following program illustrates when constructors are executed:
// Demonstrate when constructors are called.
// Create a super class.
class A {
A() {
System.out.println("Inside A's constructor.");
}
}

// Create a subclass by extending class A.
class B extends A {
B() {
System.out.println("Inside B's constructor.");
}

}
// Create another subclass by extending B.
class C extends B {
C() {
System.out.println("Inside C's constructor.");
}
}
class CallingCons {
public static void main(String args[]) {
C c = new C();
}
}
The output from this program is shown here:
Inside A’s constructor
Inside B’s constructor
Inside C’s constructor
As you can see, the constructors are called in order of derivation. If you think about it, it makes
sense that constructors are executed in order of derivation. Because a superclass has no
knowledge of any subclass, any initialization it needs to perform is separate from and possibly
prerequisite to any initialization performed by the subclass. Therefore, it must be executed first.

Method Overriding
In a class hierarchy, when a method in a subclass has the same name and type signature as a
method in its superclass, then the method in the subclass is said to override the method in the
superclass. When an overridden method is called from within a subclass, it will always refer to
the version of that method defined by the subclass. The version of the method defined by the
superclass will be hidden. Consider the following:
// Method overriding.
class A {
int i, j;
A(int a, int b) {
i = a;
j = b;
}
// display i and j
void show() {
System.out.println("i and j: " + i + " " + j);
}
}

class B extends A {
int k;
B(int a, int b, int c) {
super(a, b);
k = c;
}
// display k – this overrides show() in A

void show() {
System.out.println("k: " + k);
}
}
class Override {
public static void main(String args[]) {
B subOb = new B(1, 2, 3);
subOb.show(); // this calls show() in B
}
}
The output produced by this program is shown here:
k: 3
When show() is invoked on an object of type B, the version of show() defined within B is used.
That is, the version of show() inside B overrides the version declared in A. If you wish to access
the superclass version of an overridden method, you can do so by using super. For example, in
this version of B, the superclass version of show() is invoked within the subclass’ version. This
allows all instance variables to be displayed.
class B extends A {
int k;
B(int a, int b, int c) {
super(a, b);
k = c;
}
void show() {
super.show(); // this calls A's show()
System.out.println("k: " + k);
}
}
If you substitute this version of A into the previous program, you will see the following
output:
i and j: 1 2
k: 3
Here, super.show() calls the superclass version of show().

Using Abstract Classes
There are situations in which you will want to define a superclass that declares the structure of a
given abstraction without providing a complete implementation of every method. That is,
sometimes you will want to create a superclass that only defines a generalized form that will be
shared by all of its subclasses, leaving it to each subclass to fill in the details. Such a class
determines the nature of the methods that the subclasses must implement. One way this situation
can occur is when a superclass is unable to create a meaningful implementation for a method.
This is the case with the class Figure used in the preceding example. The definition of area() is
simply a placeholder. It will not compute and display the area of any type of object..

As you will see as you create your own class libraries, it is not uncommon for a method to have
no meaningful definition in the context of its superclass. You can handle this situation two ways.
One way, as shown in the previous example, is to simply have it report a warning message.

While this approach can be useful in certain situations—such as debugging—it is not usually
appropriate. You may have methods that must be overridden by the subclass in order for the
subclass to have any meaning. Consider the class Triangle. It has no meaning if area() is not
defined. In this case, you want some way to ensure that a subclass does, indeed, override all
necessary methods. Java’s solution to this problem is the abstract method. You can require that
certain methods be overridden by subclasses by specifying the abstract type modifier. These
methods are sometimes referred to as subclasser responsibility because they have no
implementation specified in the superclass. Thus, a subclass must override them—it cannot
simply use the version defined in the superclass. To declare an abstract method, use this general
form:
abstract type name(parameter-list);
As you can see, no method body is present.
Any class that contains one or more abstract methods must also be declared abstract. To declare
a class abstract, you simply use the abstract keyword in front of the class keyword at the
beginning of the class declaration. There can be no objects of an abstract class. That is, an
abstract class cannot be directly instantiated with the new operator. Such objects would be
useless, because an abstract class is not fully defined. Also, you cannot declare abstract
constructors, or abstract static methods. Any subclass of an abstract class must either implement
all of the abstract methods in the superclass, or be itself declared abstract. Here is a simple
example of a class with an abstract method, followed by a class which implements that method:
// A Simple demonstration of abstract.
abstract class A {
abstract void callme();
// concrete methods are still allowed in abstract classes
void callmetoo() {
System.out.println("This is a concrete method.");
}
}
class B extends A {
void callme() {
System.out.println("B's implementation of callme.");
}
}
class AbstractDemo {
public static void main(String args[]) {
B b = new B();
b.callme();
b.callmetoo();
}
}
Notice that no objects of class A are declared in the program. As mentioned, it is not possible to
instantiate an abstract class. One other point: class A implements a concrete method called
callmetoo(). This is perfectly acceptable. Abstract classes can include as much implementation
as they see fit.
Although abstract classes cannot be used to instantiate objects, they can be used to create object
references, because Java’s approach to run-time polymorphism is implemented through the use

of superclass references. Thus, it must be possible to create a reference to an abstract class so
that it can be used to point to a subclass object. You will see this feature put to use in the next
example.
Using final with Inheritance
The keyword final has three uses. First, it can be used to create the equivalent of a named
constant. This use was described in the preceding chapter. The other two uses of final apply to
inheritance. Both are examined here.
Using final to Prevent Overriding
While method overriding is one of Java’s most powerful features, there will be times when you
will want to prevent it from occurring. To disallow a method from being overridden, specify
final as a modifier at the start of its declaration. Methods declared as final cannot be overridden.
The following fragment illustrates final:
class A {
final void meth() {
System.out.println("This is a final method.");
}
}
class B extends A {
void meth() { // ERROR! Can't override.
System.out.println("Illegal!");
}
}
Because meth() is declared as final, it cannot be overridden in B. If you attempt to do so, a
compile-time error will result. Methods declared as final can sometimes provide a performance
enhancement: The compiler is free to inline calls to them because it “knows” they will not be
overridden by a subclass. When a small final method is called, often the Java compiler can copy
the bytecode for the subroutine directly inline with the compiled code of the calling method, thus
eliminating the costly overhead associated with a method call. Inlining is only an option with
final methods. Normally, Java resolves calls to methods dynamically, at run time. This is called
late binding. However, since final methods cannot be overridden, a call to one can be resolved at
compile time. This is called early binding.

Using final to Prevent Inheritance
Sometimes you will want to prevent a class from being inherited. To do this, precede the class
declaration with final. Declaring a class as final implicitly declares all of its methods as final,
too. As you might expect, it is illegal to declare a class as both abstract and final since an
abstract class is incomplete by itself and relies upon its subclasses to provide complete
implementations.
Here is an example of a final class:
final class A {
// ...
}
// The following class is illegal.
class B extends A { // ERROR! Can't subclass A
// ...
}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

Packages
A unique name had to be used for each class to avoid name collisions. After a while, without
some way to manage the name space, you could run out of convenient, descriptive names for
individual classes. You also need some way to be assured that the name you choose for a class
will be reasonably unique and not collide with class names chosen by other programmers.
(Imagine a small group of programmers fighting over who gets to use the name “Foobar” as a
class name. Or, imagine the entire Internet community arguing over who first named a class
“Espresso.”) Thankfully, Java provides a mechanism for partitioning the class name space into
more manageable chunks. This mechanism is the package. The package is both a naming and a
visibility control mechanism. You can define classes inside a package that are not accessible by
code outside that package. You can also define class members that are only exposed to other
members of the same package. This allows your classes to have intimate knowledge of each
other, but not expose that knowledge to the rest of the world.

Defining a Package
To create a package is quite easy: simply include a package command as the first statement in a
Java source file. Any classes declared within that file will belong to the specified package. The
package statement defines a name space in which classes are stored. If you omit the package
statement, the class names are put into the default package, which has no name. (This is why you
haven’t had to worry about packages before now.) While the default package is fine for short,
sample programs, it is inadequate for real applications. Most of the time, you will define a
package for your code. This is the general form of the package statement:

package pkg;
Here, pkg is the name of the package. For example, the following statement creates a package
called MyPackage.
package MyPackage;
Java uses file system directories to store packages. For example, the .class files for any classes
you declare to be part of MyPackage must be stored in a directory called MyPackage.
Remember that case is significant, and the directory name must match the package name exactly.
More than one file can include the same package statement. The package statement simply
specifies to which package the classes defined in a file belong. It does not exclude other classes
in other files from being part of that same package. Most real-world packages are spread across
many files. You can create a hierarchy of packages. To do so, simply separate each package
name from the one above it by use of a period. The general form of a multileveled package
statement is shown here:

package pkg1[.pkg2[.pkg3]];
Apackage hierarchy must be reflected in the file system of your Java development system. For
example, a package declared as
package java.awt.image;
needs to be stored in java\awt\image in a Windows environment. Be sure to choose your
package names carefully. You cannot rename a package without renaming the directory in which
the classes are stored.
Finding Packages and CLASSPATH

As just explained, packages are mirrored by directories. This raises an important question: How
does the Java run-time system know where to look for packages that you create? The answer has
three parts. First, by default, the Java run-time system uses the current working directory as its
starting point. Thus, if your package is in a subdirectory of the current directory, it will be found.
Second, you can specify a directory path or paths by setting the CLASSPATH environmental
variable. Third, you can use the -classpath option with java and javac to specify the path to
your classes.
For example, consider the following package specification:
package MyPack
In order for a program to find MyPack, one of three things must be true. Either the program can
be executed from a directory immediately above MyPack, or the CLASSPATH must be set to
include the path to MyPack, or the -classpath option must specify the path to MyPack when the
program is run via java. When the second two options are used, the class path must not include
MyPack, itself. It must simply specify the path to MyPack. For example, in a Windows
environment, if the path to MyPack is

C:\MyPrograms\Java\MyPack
Then the class path to MyPack is
C:\MyPrograms\Java
The easiest way to try the examples shown in this book is to simply create the package
directories below your current development directory, put the .class files into the appropriate
directories, and then execute the programs from the development directory. This is the approach
used in the following example.

A Short Package Example
Keeping the preceding discussion in mind, you can try this simple package:
// A simple package
package MyPack;
class Balance {
String name;
double bal;
Balance(String n, double b) {
name = n;
bal = b;
}
void show() {
if(bal<0)
System.out.print("--> ");
System.out.println(name + ": $" + bal);
}
}
class AccountBalance {
public static void main(String args[]) {
Balance current[] = new Balance[3];

current[0] = new Balance("K. J. Fielding", 123.23);

current[1] = new Balance("Will Tell", 157.02);
current[2] = new Balance("Tom Jackson", -12.33);
for(int i=0; i<3; i++) current[i].show();
}
}
Call this file AccountBalance.java and put it in a directory called MyPack. Next, compile the
file. Make sure that the resulting .class file is also in the MyPack directory. Then, try executing
the AccountBalance class, using the following command line:
java MyPack.AccountBalance
Remember, you will need to be in the directory above MyPack when you execute this command.
As explained, AccountBalance is now part of the package MyPack. This means that it cannot
be executed by itself. That is, you cannot use this command line:
java AccountBalance
AccountBalance must be qualified with its package name.

Importing Packages
Given that packages exist and are a good mechanism for compartmentalizing diverse classes
from each other, it is easy to see why all of the built-in Java classes are stored in packages. There
are no core Java classes in the unnamed default package; all of the standard classes are stored in
some named package. Since classes within packages must be fully qualified with their package
name or names, it could become tedious to type in the long dot-separated package path name for
every class you want to use. For this reason, Java includes the import statement to bring certain
classes, or entire packages, into visibility. Once imported, a class can be referred to directly,
using only its name. The import statement is a convenience to the programmer and is not
technically needed to write a complete Java program. If you are going to refer to a few dozen
classes in your application, however, the import statement will save a lot of typing.
In a Java source file, import statements occur immediately following the package statement (if
it exists) and before any class definitions. This is the general form of the import statement:
import pkg1[.pkg2].(classname|*);
Here, pkg1 is the name of a top-level package, and pkg2 is the name of a subordinate package
inside the outer package separated by a dot (.). There is no practical limit on the depth of a
package hierarchy, except that imposed by the file system. Finally, you specify either an explicit
classname or a star (*), which indicates that the Java compiler should import the entire package.
This code fragment shows both forms in use:
import java.util.Date;
import java.io.*;

Interfaces
Using the keyword interface, you can fully abstract a class’ interface from its implementation.
That is, using interface, you can specify what a class must do, but not how it does it. Interfaces
are syntactically similar to classes, but they lack instance variables, and their methods are
declared without any body. In practice, this means that you can define interfaces that don’t make
assumptions about how they are implemented. Once it is defined, any number of classes can
implement an interface. Also, one class can implement any number of interfaces. To implement
an interface, a class must create the complete set of methods defined by the interface. However,

each class is free to determine the details of its own implementation. By providing the interface
keyword, Java allows you to fully utilize the “one interface, multiple methods” aspect of
polymorphism.

Interfaces are designed to support dynamic method resolution at run time. Normally, in order for
a method to be called from one class to another, both classes need to be present at compile time
so the Java compiler can check to ensure that the method signatures are compatible. This
requirement by itself makes for a static and nonextensible classing environment. Inevitably in a
system like this, functionality gets pushed up higher and higher in the class hierarchy so that the
mechanisms will be available to more and more subclasses. Interfaces are designed to avoid this
problem. They disconnect the definition of a method or set of methods from the inheritance
hierarchy. Since interfaces are in a different hierarchy from classes, it is possible for classes that
are unrelated in terms of the class hierarchy to implement the same interface. This is where the
real power of interfaces is realized.

Defining an Interface
An interface is defined much like a class. This is the general form of an interface:
access interface name {
return-type method-name1(parameter-list);
return-type method-name2(parameter-list);
type final-varname1 = value;
type final-varname2 = value;
// ...
return-type method-nameN(parameter-list);
type final-varnameN = value;
}
When no access specifier is included, then default access results, and the interface is only
available to other members of the package in which it is declared. When it is declared as public,
the interface can be used by any other code. In this case, the interface must be the only public
interface declared in the file, and the file must have the same name as the interface. name is the
name of the interface, and can be any valid identifier. Notice that the methods that are declared
have no bodies. They end with a semicolon after the parameter list. They are, essentially, abstract
methods; there can be no default implementation of any method specified within an interface.
Each class that includes an interface must implement all of the methods. Variables can be
declared inside of interface declarations. They are implicitly final and static, meaning they
cannot be changed by the implementing class. They must also be initialized. All methods and
variables are implicitly public.
Here is an example of an interface definition. It declares a simple interface that contains one
method called callback() that takes a single integer parameter.
interface Callback {
void callback(int param);
}

Implementing Interfaces
Once an interface has been defined, one or more classes can implement that interface. To
implement an interface, include the implements clause in a class definition, and then create the

methods defined by the interface. The general form of a class that includes the implements
clause looks like this:
class classname [extends superclass] [implements interface [,interface...]] {
// class-body
}
If a class implements more than one interface, the interfaces are separated with a comma. If a
class implements two interfaces that declare the same method, then the same method will be used
by clients of either interface. The methods that implement an interface must be declared public.
Also, the type signature of the implementing method must match exactly the type signature
specified in the interface definition.
Here is a small example class that implements the Callback interface shown earlier.
class Client implements Callback {
// Implement Callback's interface
public void callback(int p) {
System.out.println("callback called with " + p);
}
}
Notice that callback() is declared using the public access specifier.

It is both permissible and common for classes that implement interfaces to define
additional members of their own. For example, the following version of Client implements
callback() and adds the method nonIfaceMeth():
class Client implements Callback {
// Implement Callback's interface
public void callback(int p) {
System.out.println("callback called with " + p);
}
void nonIfaceMeth() {
System.out.println("Classes that implement interfaces " +
"may also define other members, too.");
}
}

Partial Implementations
If a class includes an interface but does not fully implement the methods defined by that
interface, then that class must be declared as abstract. For example:
abstract class Incomplete implements Callback {
int a, b;
void show() {
System.out.println(a + " " + b);
}
// ...
}
Here, the class Incomplete does not implement callback() and must be declared as abstract.
Any class that inherits Incomplete must implement callback() or be declared abstract itself.

Nested Interfaces

An interface can be declared a member of a class or another interface. Such an interface is called
a member interface or a nested interface. A nested interface can be declared as public, private,
or protected. This differs from a top-level interface, which must either be declared as public or
use the default access level, as previously described. When a nested interface is used outside of
its enclosing scope, it must be qualified by the name of the class or interface of which it is a
member. Thus, outside of the class or interface in which a nested interface is declared, its name
must be fully qualified. Here is an example that demonstrates a nested interface:
// A nested interface example.
// This class contains a member interface.
class A {

// this is a nested interface
public interface NestedIF {
boolean isNotNegative(int x);
}
}
// B implements the nested interface.
class B implements A.NestedIF {
public boolean isNotNegative(int x) {
return x < 0 ? false : true;
}
}
class NestedIFDemo {
public static void main(String args[]) {
// use a nested interface reference
A.NestedIF nif = new B();
if(nif.isNotNegative(10))
System.out.println("10 is not negative");
if(nif.isNotNegative(-12))
System.out.println("this won't be displayed");
}
}
Notice that A defines a member interface called NestedIF and that it is declared public. Next, B
implements the nested interface by specifying implements A.NestedIF Notice that the name is
fully qualified by the enclosing class’ name. Inside the main() method, an A.NestedIF reference
called nif is created, and it is assigned a reference to a B object. Because B implements
A.NestedIF, this is legal.

A Package can be defined as a grouping of related types (classes, interfaces, enumerations and
annotations) providing access protection and namespace management.

Some of the existing packages in Java are −

 java.lang − bundles the fundamental classes

 java.io − classes for input , output functions are bundled in this package

Programmers can define their own packages to bundle group of classes/interfaces, etc. It is a
good practice to group related classes implemented by you so that a programmer can easily
determine that the classes, interfaces, enumerations, and annotations are related.

Since the package creates a new namespace there won't be any name conflicts with names in
other packages. Using packages, it is easier to provide access control and it is also easier to
locate the related classes.

Creating a Package

While creating a package, you should choose a name for the package and include
a package statement along with that name at the top of every source file that contains the classes,
interfaces, enumerations, and annotation types that you want to include in the package.

The package statement should be the first line in the source file. There can be only one package
statement in each source file, and it applies to all types in the file.

If a package statement is not used then the class, interfaces, enumerations, and annotation types
will be placed in the current default package.

To compile the Java programs with package statements, you have to use -d option as shown
below.

javac -d Destination_folder file_name.java

Then a folder with the given package name is created in the specified destination, and the
compiled class files will be placed in that folder.

Example

Let us look at an example that creates a package called animals. It is a good practice to use
names of packages with lower case letters to avoid any conflicts with the names of classes and
interfaces.

Following package example contains interface named animals −

/* File name : Animal.java */

package animals;

interface Animal {

 public void eat();

 public void travel();

}

Now, let us implement the above interface in the same package animals −

package animals;

/* File name : MammalInt.java */

public class MammalInt implements Animal {

 public void eat() {

 System.out.println("Mammal eats");

 }

 public void travel() {

 System.out.println("Mammal travels");

 }

 public int noOfLegs() {

 return 0;

 }

 public static void main(String args[]) {

 MammalInt m = new MammalInt();

 m.eat();

 m.travel();

 }

}

Now compile the java files as shown below −

$ javac -d . Animal.java

$ javac -d . MammalInt.java

Now a package/folder with the name animals will be created in the current directory and these
class files will be placed in it as shown below.

You can execute the class file within the package and get the result as shown below.

Mammal eats

Mammal travels

The import Keyword

If a class wants to use another class in the same package, the package name need not be used.
Classes in the same package find each other without any special syntax.

Example

Here, a class named Boss is added to the payroll package that already contains Employee. The
Boss can then refer to the Employee class without using the payroll prefix, as demonstrated by
the following Boss class.

package payroll;

public class Boss {

 public void payEmployee(Employee e) {

 e.mailCheck();

 }

}

What happens if the Employee class is not in the payroll package? The Boss class must then use
one of the following techniques for referring to a class in a different package.

 The fully qualified name of the class can be used. For example −

payroll.Employee

 The package can be imported using the import keyword and the wild card (*). For
example −

import payroll.*;

 The class itself can be imported using the import keyword. For example −

import payroll.Employee;

Note − A class file can contain any number of import statements. The import statements must
appear after the package statement and before the class declaration.

The Directory Structure of Packages

Two major results occur when a class is placed in a package −

 The name of the package becomes a part of the name of the class, as we just discussed in
the previous section.

 The name of the package must match the directory structure where the corresponding
bytecode resides.

Here is simple way of managing your files in Java −

Put the source code for a class, interface, enumeration, or annotation type in a text file whose
name is the simple name of the type and whose extension is .java.

For example −

// File Name : Car.java

package vehicle;

public class Car {

 // Class implementation.

}

Now, put the source file in a directory whose name reflects the name of the package to which the
class belongs −

....\vehicle\Car.java

Now, the qualified class name and pathname would be as follows −

 Class name → vehicle.Car

 Path name → vehicle\Car.java (in windows)

In general, a company uses its reversed Internet domain name for its package names.

Example − A company's Internet domain name is apple.com, then all its package names would
start with com.apple. Each component of the package name corresponds to a subdirectory.

Example − The company had a com.apple.computers package that contained a Dell.java source
file, it would be contained in a series of subdirectories like this −

....\com\apple\computers\Dell.java

At the time of compilation, the compiler creates a different output file for each class, interface
and enumeration defined in it. The base name of the output file is the name of the type, and its
extension is .class.

For example −

// File Name: Dell.java

package com.apple.computers;

public class Dell {

}

class Ups {

}

Now, compile this file as follows using -d option −

$javac -d . Dell.java

The files will be compiled as follows −

.\com\apple\computers\Dell.class

.\com\apple\computers\Ups.class

You can import all the classes or interfaces defined in \com\apple\computers\ as follows −

import com.apple.computers.*;

Like the .java source files, the compiled .class files should be in a series of directories that reflect
the package name. However, the path to the .class files does not have to be the same as the path
to the .java source files. You can arrange your source and class directories separately, as −

<path-one>\sources\com\apple\computers\Dell.java

<path-two>\classes\com\apple\computers\Dell.class

By doing this, it is possible to give access to the classes directory to other programmers without
revealing your sources. You also need to manage source and class files in this manner so that the
compiler and the Java Virtual Machine (JVM) can find all the types your program uses.

The full path to the classes directory, <path-two>\classes, is called the class path, and is set with
the CLASSPATH system variable. Both the compiler and the JVM construct the path to your
.class files by adding the package name to the class path.

Say <path-two>\classes is the class path, and the package name is com.apple.computers, then the
compiler and JVM will look for .class files in <path-two>\classes\com\apple\computers.

A class path may include several paths. Multiple paths should be separated by a semicolon
(Windows) or colon (Unix). By default, the compiler and the JVM search the current directory
and the JAR file containing the Java platform classes so that these directories are automatically
in the class path.

Set CLASSPATH System Variable

To display the current CLASSPATH variable, use the following commands in Windows and
UNIX (Bourne shell) −

 In Windows → C:\> set CLASSPATH

 In UNIX → % echo $CLASSPATH

To delete the current contents of the CLASSPATH variable, use −

 In Windows → C:\> set CLASSPATH =

 In UNIX → % unset CLASSPATH; export CLASSPATH

To set the CLASSPATH variable −

In Windows → set CLASSPATH = C:\users\jack\java\classes

In UNIX → % CLASSPATH = /home/jack/java/classes; export CLASSPATH

An exception (or exceptional event) is a problem that arises during the execution of a
program. When an Exception occurs the normal flow of the program is disrupted and the
program/Application terminates abnormally, which is not recommended, therefore, these
exceptions are to be handled.
An exception can occur for many different reasons. Following are some scenarios where an
exception occurs.

unications or the JVM has run
out of memory.

Some of these exceptions are caused by user error, others by programmer error, and others by
physical resources that have failed in some manner.
Based on these, we have three categories of Exceptions. You need to understand them to
know how exception handling works in Java.

Checked exceptions: A checked exception is an exception that occurs at the compile time,
these are also called as compile time exceptions. These exceptions cannot simply be ignored
at the time of compilation, the programmer should take care of (handle) these exceptions.

For example, if you use FileReader class in your program to read data from a file, if the file
specified in its constructor doesn't exist, then a FileNotFoundException occurs, and the
compiler prompts the programmer to handle the exception.
import java.io.File;
import java.io.FileReader;
public class FilenotFound_Demo {
public static void main(String args[]){
File file=new File("E://file.txt");
FileReader fr = new FileReader(file);
}
}

If you try to compile the above program, you will get the following exceptions.
C:\>javac FilenotFound_Demo.java
FilenotFound_Demo.java:8: error: unreported exception FileNotFoundException; must be caught
or declared to be thrown
FileReader fr = new FileReader(file);
^
1 error
Note: Since the methods read() and close() of FileReader class throws IOException, you can
observe that the compiler notifies to handle IOException, along with FileNotFoundException.

Unchecked exceptions: An unchecked exception is an exception that occurs at the time of
execution. These are also called as Runtime Exceptions. These include programming bugs, such
as logic errors or improper use of an API. Runtime exceptions are ignored at the time of
compilation.

For example, if you have declared an array of size 5 in your program, and trying to call the 6th
element of the array then an ArrayIndexOutOfBoundsExceptionexception occurs.
public class Unchecked_Demo {
public static void main(String args[]){
int num[]={1,2,3,4};
System.out.println(num[5]);
}
}
If you compile and execute the above program, you will get the following exception.
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 5
at Exceptions.Unchecked_Demo.main(Unchecked_Demo.java:8)

Errors: These are not exceptions at all, but problems that arise beyond the control of the user
or the programmer. Errors are typically ignored in your code because you can rarely do anything
about an error. For example, if a stack overflow occurs, an error will arise. They are also ignored
at the time of compilation.

Exception Hierarchy

All exception classes are subtypes of the java.lang.Exception class. The exception class is a
subclass of the Throwable class. Other than the exception class there is another subclass called
Error which is derived from the Throwable class.

Errors are abnormal conditions that happen in case of severe failures, these are not handled
by the Java programs. Errors are generated to indicate errors generated by the

runtime environment. Example: JVM is out of memory. Normally, programs cannot recover
from errors.
The Exception class has two main subclasses: IOException class and RuntimeException Class.
Following is a list of most common checked and unchecked Java's Built-in Exceptions.
Built-in Exceptions
Java defines several exception classes inside the standard package java.lang.
The most general of these exceptions are subclasses of the standard type RuntimeException.
Since java.lang is implicitly imported into all Java programs, most exceptions derived from
RuntimeException are automatically available.
Java defines several other types of exceptions that relate to its various class libraries. Following
is the list of Java Unchecked RuntimeException.

Exception Description
ArithmeticException Arithmetic error, such as divide-by-zero.
ArrayIndexOutOfBoundsException Array index is out-of-bounds.
ArrayStoreException Assignment to an array element of an

incompatible type.
ClassCastException Invalid cast.
IllegalArgumentException Illegal argument used to invoke a method.
llegalMonitorStateException Illegal monitor operation, such as waiting

on an unlocked thread.
IllegalStateException Environment or application is in incorrect

state.
IllegalThreadStateException Requested operation not compatible with

the current thread state.
IndexOutOfBoundsException Some type of index is out-of-bounds.
NegativeArraySizeException Array created with a negative size.
NullPointerException Invalid use of a null reference.
NumberFormatException Invalid conversion of a string to a numeric

format.
SecurityException Attempt to violate security.
StringIndexOutOfBounds Attempt to index outside the bounds of a

string.
UnsupportedOperationException An unsupported operation was encountered.

Following is the list of Java Checked Exceptions Defined in java.lang. Exception

Exception Description
ClassNotFoundException Class not found.
CloneNotSupportedException Attempt to clone an object that does not

implement the Cloneable interface.
IllegalAccessException Access to a class is denied.
InstantiationException Attempt to create an object of an abstract

class or interface.
InterruptedException One thread has been interrupted by another

thread.
NoSuchFieldException A requested field does not exist.

Exceptions Methods
Following is the list of important methods available in the Throwable class

. Sr. No. Methods with Description
1

public String getMessage()
Returns a detailed message about the exception that has occurred. This
message is initialized in the Throwable constructor.

2 public Throwable getCause()
Returns the cause of the exception as represented by a Throwable object.

3 public String toString()
Returns the name of the class concatenated with the result of getMessage().

4 public void printStackTrace()
Prints the result of toString() along with the stack trace to System.err, the
error output stream.

5 public StackTraceElement [] getStackTrace()
Returns an array containing each element on the stack trace. The element at
index 0 represents the top of the call stack, and the last element in the array
represents the method at the bottom of the call stack.

6 public Throwable fillInStackTrace()
Fills the stack trace of this Throwable object with the current stack trace,
adding to any previous information in the stack trace.

Catching Exceptions
A method catches an exception using a combination of the try and catch keywords. A try/catch
block is placed around the code that might generate an exception. Code within a try/catch block
is referred to as protected code, and the syntax for using try/catch looks like the following:
try
{
//Protected code
}catch(ExceptionName e1)
{
//Catch block
}

The code which is prone to exceptions is placed in the try block. When an exception occurs, that
exception occurred is handled by catch block associated with it. Every try block should be
immediately followed either by a catch block or finally block.
A catch statement involves declaring the type of exception you are trying to catch. If an
exception occurs in protected code, the catch block (or blocks) that follows the try is checked. If
the type of exception that occurred is listed in a catch block, the exception is passed to the catch
block much as an argument is passed into a method parameter.
Example
The following is an array declared with 2 elements. Then the code tries to access the 3rd element
of the array which throws an exception.
// File Name : ExcepTest.java
import java.io.*;
public class ExcepTest{
public static void main(String args[]){
try{
int a[] = new int[2];
System.out.println("Access element three :" + a[3]);
}catch(ArrayIndexOutOfBoundsException e){
System.out.println("Exception thrown :" + e);
}
System.out.println("Out of the block");
}

}

This will produce the following result:
Exception thrown :java.lang.ArrayIndexOutOfBoundsException: 3
Out of the block
Multiple Catch Blocks
A try block can be followed by multiple catch blocks. The syntax for multiple catch blocks looks
like the following:
try
{
//Protected code
}catch(ExceptionType1 e1)
{
//Catch block
}catch(ExceptionType2 e2)
{
//Catch block
}catch(ExceptionType3 e3)
{
//Catch block
}
The previous statements demonstrate three catch blocks, but you can have any number of them
after a single try. If an exception occurs in the protected code, the exception is thrown to the first

catch block in the list. If the data type of the exception thrown matches ExceptionType1, it gets
caught there. If not, the exception passes down to the second catch statement. This continues
until the exception either is caught or falls through all catches, in which case the current method
stops execution and the exception is thrown down to the previous method on the call stack.
Example
Here is code segment showing how to use multiple try/catch statements.
try
{
file = new FileInputStream(fileName);
x = (byte) file.read();
}catch(IOException i)
{

i.printStackTrace();

return -1;
}catch(FileNotFoundException f) //Not valid!
{
f.printStackTrace();
return -1;
}
Catching Multiple Type of Exceptions
Since Java 7, you can handle more than one exception using a single catch block, this feature
simplifies the code. Here is how you would do it:
catch (IOException|FileNotFoundException ex) {
logger.log(ex);
throw ex;
The Throws/Throw Keywords
If a method does not handle a checked exception, the method must declare it using the throws
keyword. The throws keyword appears at the end of a method's signature.
You can throw an exception, either a newly instantiated one or an exception that you just caught,
by using the throw keyword.
Try to understand the difference between throws and throw keywords, throws is used to postpone
the handling of a checked exception and throw is used to invoke an exception explicitly.
The following method declares that it throws a RemoteException:
import java.io.*;
public class className
{
public void deposit(double amount) throws RemoteException
{
// Method implementation
throw new RemoteException();
}
//Remainder of class definition

}

A method can declare that it throws more than one exception, in which case the exceptions are
declared in a list separated by commas. For example, the following method declares that it
throws a RemoteException and an InsufficientFundsException:
import java.io.*;
public class className
{
public void withdraw(double amount) throws RemoteException,
InsufficientFundsException
{
// Method implementation
}
//Remainder of class definition

}

The Finally Block
The finally block follows a try block or a catch block. A finally block of code always executes,
irrespective of occurrence of an Exception.
Using a finally block allows you to run any cleanup-type statements that you want to execute, no
matter what happens in the protected code.
A finally block appears at the end of the catch blocks and has the following syntax:
try
{
//Protected code
}catch(ExceptionType1 e1)
{
//Catch block
}catch(ExceptionType2 e2)
{
//Catch block
}catch(ExceptionType3 e3)
{
//Catch block
}finally
{
//The finally block always executes.

}

Example
public class ExcepTest{
public static void main(String args[]){
int a[] = new int[2];
try{
System.out.println("Access element three :" + a[3]);
}catch(ArrayIndexOutOfBoundsException e){
System.out.println("Exception thrown :" + e);
}
finally{

a[0] = 6;
System.out.println("First element value: " +a[0]);
System.out.println("The finally statement is executed");
}
}
}
This will produce the following result:
Exception thrown :java.lang.ArrayIndexOutOfBoundsException: 3
First element value: 6
The finally statement is executed
Note the following:

User-defined Exceptions
You can create your own exceptions in Java. Keep the following points in mind when writing
your own exception classes:

Declare Rule, you need to extend the Exception class.

o write a runtime exception, you need to extend the RuntimeException class.

We can define our own Exception class as below:
class MyException extends Exception{
}
You just need to extend the predefined Exception class to create your own Exception. These are
considered to be checked exceptions. The following InsufficientFundsException class is a user-
defined exception that extends the Exception class, making it a checked exception. An exception
class is like any other class, containing useful fields and methods.
Example
// File Name InsufficientFundsException.java
import java.io.*;
public class InsufficientFundsException extends Exception
{
private double amount;
public InsufficientFundsException(double amount)
{
this.amount = amount;
}
public double getAmount()

{
return amount;
}

}

To demonstrate using our user-defined exception, the following CheckingAccount class contains
a withdraw() method that throws an InsufficientFundsException.
// File Name CheckingAccount.java
import java.io.*;
public class CheckingAccount
{
private double balance;
private int number;
public CheckingAccount(int number)
{
this.number = number;
}
public void deposit(double amount)
{
balance += amount;
}
public void withdraw(double amount) throws InsufficientFundsException
{
if(amount <= balance)
{
balance -= amount;
}
else
{
double needs = amount - balance;
throw new InsufficientFundsException(needs);
}
}
public double getBalance()
{
return balance;

}

public int getNumber()
{
return number;
}
}
The following BankDemo program demonstrates invoking the deposit() and withdraw() methods
of CheckingAccount.
// File Name BankDemo.java
public class BankDemo

{
public static void main(String [] args)
{
CheckingAccount c = new CheckingAccount(101);
System.out.println("Depositing $500...");
c.deposit(500.00);
try
{
System.out.println("\nWithdrawing $100...");
c.withdraw(100.00);
System.out.println("\nWithdrawing $600...");
c.withdraw(600.00);
}catch(InsufficientFundsException e)
{
System.out.println("Sorry, but you are short $" + e.getAmount());
e.printStackTrace();
}
}
}
Compile all the above three files and run BankDemo. This will produce the following result:
Depositing $500...
Withdrawing $100...

Withdrawing $600...

Sorry, but you are short $200.0
InsufficientFundsException
at CheckingAccount.withdraw(CheckingAccount.java:25)
at BankDemo.main(BankDemo.java:13)

Common Exceptions
In Java, it is possible to define two catergories of Exceptions and Errors.

JVM Exceptions: These are exceptions/errors that are exclusively or logically thrown by the
JVM. Examples: NullPointerException, ArrayIndexOutOfBoundsException,
ClassCastException.

Programmatic Exceptions: These exceptions are thrown explicitly by the application or the
API programmers. Examples: IllegalArgumentException, IllegalStateException.

